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[1] Previous studies have examined free convection and the development of fingers in
variable-density groundwater environments, but the penetration rates of fingering processes
(i.e., fingering speeds) have not been systematically investigated. Unlike common
groundwater processes driven by advection and whose flow rates may be computed using
Darcy’s law, fingering speeds are far less intuitive. In this study, fingering speeds are
analyzed in a natural convection system using two measurable diagnostics: deepest plume
front (DPF, providing upper bounds on plume speeds) and vertical center of solute mass
(COM, providing global speeds). The permeability, porosity, and dispersion (longitudinal
and transverse dispersivities) were varied using a perturbation-based stochastic approach to
investigate their effects on fingering speeds. Modeling results show that the characteristic
convective velocity, commonly used to represent theoretical fingering speeds, needs to
incorporate effective porosity in a similar fashion to hydraulically driven average linear
velocity and needs to be further adjusted by multiplying by a corrective factor f for
predicting various fingering behaviors (approximately f ¼ 0.115 for DPF and f ¼ 0.034 for
COM) in this study. A stochastic analysis demonstrates small variability in the time-varying
speed of both DPF and COM between model realizations. This indicates that reproducing
fingering speeds is likely to be achieved and that one single realization can adequately
produce f for the characteristic convective velocity. This study also identifies that f for
speeds of DPF is most likely to be constrained by (0.115, 1.000), which is extremely useful
in the design of laboratory and field experimentation.

Citation: Xie, Y., C. T. Simmons, and A. D. Werner (2011), Speed of free convective fingering in porous media, Water Resour. Res.,
47, W11501, doi:10.1029/2011WR010555.

1. Introduction
[2] Many hydrogeologic situations may involve poten-

tially unstable stratification where dense fluid sits above less
dense fluid because of variations in solute concentration,
temperature, and/or pressure of groundwater. Under certain
conditions involving solutes, this stratification may lead to
the development of gravitational instabilities (i.e., fingers or
plumes) associated with free convection and subsequently
cause solute transport over larger areas within shorter time
scales than diffusion alone [e.g., Wooding et al., 1997;
Zimmermann et al., 2006; Zhang and Schwartz, 1995;
Simmons, 2005]. When fingers develop at the bottom edge
of the interface between intruding dense water and ambient
groundwater, they migrate downward and become entrained
within the ambient groundwater flow [e.g., Schincariol and
Schwartz, 1990; Oostrom et al., 1992; Wooding et al., 1997].
The rate and extent of groundwater contamination due to free
convection are inherently linked to the descent speed of the
solute fingers associated with the free convection process.

[3] Theoretical free convective fingering speeds have
been associated previously with a generalized characteristic
convective (Darcy) velocity Uc, expressed as [Gebhart
et al., 1988; Wooding et al., 1997; Riaz et al., 2006]

Uc ¼
k��g
�
¼ K

��

�0
; ð1Þ

where k is the permeability of a porous medium, �� is the
density difference between maximum density and base ref-
erence density, g is the gravitational acceleration, � is the
dynamic viscosity, often assumed to be independent of sol-
ute concentration, K is the hydraulic conductivity of a po-
rous medium, and �0 is the base reference density. Uc has
also been used in defining scaling relationships that assist
in simplifying the complicated and nonlinear behavior
associated with free convection.

[4] However, there has been ambiguity with regard to
the use of effective porosity " for computing free convec-
tive fingering speeds in hydrogeologic practice. For exam-
ple, Juster et al. [1997] and Post and Kooi [2003] include "
in characterizing rates of plume migration, while Wooding
et al. [1997], Riaz et al. [2006], and Stevens et al. [2009]
neglect " in their analyses of plume migration rates. A char-
acteristic convective velocity Vc, which is analogous to av-
erage linear velocity associated with advection processes,
would be derived if " is important (see Appendix A). There
is a need to investigate further the effect of " on plume
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migration rates, particularly given that " is a component of
the dimensionless Rayleigh number Ra, which character-
izes the onset of free convection and indicates the extent of
instability. Ra is given by

Ra ¼ gk��H
�"D0

¼ UcH
"D0

; ð2Þ

where H is the height of a porous layer and D0 is the molec-
ular diffusion coefficient. Therefore, whether Uc or Vc is
more representative of theoretical free convective fingering
speeds still remains unclear in the literature.

[5] Furthermore, how Uc or Vc relates to the real finger-
ing speeds (what one observes in practice) also remains
unclear. Importantly, unlike advection processes in ground-
water whose speeds can be routinely computed using the
classic Darcy’s law (no density effect) and that are there-
fore relatively intuitive once the hydraulic conductivity and
hydraulic head data in the system are known, the same is
not true of the speeds of free convection. There is no uni-
versally accepted way of computing the speed of free con-
vection phenomena, and in comparison to advection, our
intuition regarding how fast free convection processes are
in real groundwater systems is clearly lacking. Critically,
whether the speeds of free convective fingering are repro-
ducible and amenable to prediction remains unresolved.
These are extremely important matters both for interpreting
laboratory, model, and field experiments and in enhancing
our ability to make robust predictions about free convection
processes in those settings. An understanding of the speed of
free convection processes will also be critical in monitoring
systems designed to measure and monitor time-dependent
behavior of free convection processes, associated with a
large range of environmental phenomena, in the field. These
matters require resolution and a systematic and quantitative
evaluation.

[6] Post and Kooi [2003] conducted numerical experi-
ments to examine the real fingering speeds associated with
salinization of coastal aquifers due to free convection. They
employed a representative homogeneous free convective
system (Ra ¼ 6000) with seawater continuously intruding
into groundwater from the top as their base model. The per-
meability was then varied to investigate the corresponding
variation in fingering speeds. By analyzing three horizon-
tally averaged salinity fractions (0.1, 0.3, and 0.5, where a
value of 1 represents seawater) in the series of numerical
runs, they discovered that the permeability of an aquifer ma-
trix directly influenced the rate of plume descent. They also
generalized an empirical equation of plume descent rates
that are given by an upper bound defined by 0.22 Vc. They
noted that their empirical equation is only approximate
because of the limitations arising from various assumptions
(e.g., neglecting mechanical dispersion).

[7] Other studies have also demonstrated fingering
speeds using different approaches, e.g., mean amplitude of
fingers [Wooding, 1969], the advance of fastest finger tip
[Riaz et al., 2006], and the average depth of deepest fingers
[Simmons et al., 2002]. Wooding’s [1969] Hele-Shaw cell
results show the growth of mean amplitude of unstable
waves is a function of 0.446 Uc at an unstable diffusive
interface. Riaz et al. [2006] examined the stability of an
unstable diffusive boundary layer relating to carbon dioxide

sequestration in numerical models, and Simmons et al.
[2002] attempted to investigate the phenomena of free con-
vective solute transport in sand tank experiments. Both
Riaz et al.’s [2006] theoretical study and Simmons et al.’s
[2002] laboratory study qualitatively demonstrate that fin-
gers tend to penetrate linearly with time after they develop
from boundary layers, but no generic fingering speeds were
identified. Although nonlinear penetration behaviors were
observed by Wooding et al. [1969], Post and Kooi [2003],
and Riaz et al. [2006] at the very early times, it is of greater
importance to carefully reconcile these existing fingering
speeds with both similarities and differences [Wooding,
1969; Post and Kooi, 2003] produced across various meas-
urements, scale geometries, and hydrogeologic settings. We
also need to systematically investigate the variability of fin-
gering speeds with time, which has not been addressed
previously, and can significantly assess the predictability of
free convective fingering in inherently unstable free convec-
tion systems.

[8] The aim of this study is to reconcile the approaches
for computing the speed of free convection that have been
presented in the literature to date and to develop further
intuition about the speed of free convection. We conducted
a series of numerical simulations using the finite element
subsurface code FEFLOW [Diersch, 2005] to examine the
effects of different parameters on fingering speeds using
the modified solute analogous Elder problem [Xie et al.,
2010] and two measurable diagnostics: deepest plume front
(DPF, providing upper bounds on plume speeds) and verti-
cal center of solute mass (COM, providing global speeds).
The permeability, porosity, and dispersion (longitudinal
and transverse dispersivities) were varied using a perturba-
tion-based stochastic approach to investigate their effects
on fingering speeds.

2. Mathematical Modeling
2.1. Natural Convection in a Closed Porous Medium

[9] The classic Elder problem was initially set up by
Elder [1967] to investigate transient thermal convection in
both laboratory experiments and numerical models. It was
then modified into a solute analogous natural convection
problem by Voss and Souza [1987] to benchmark variable
density flow code SUTRA. Since then, it has become a
well-studied typical example of natural convection phe-
nomena both for benchmarking numerical simulators [e.g.,
Oldenburg and Pruess, 1995; Kolditz et al., 1998; Ackerer
et al., 1999] and for serving as a base case to investigate
more complicated free convection problems [e.g., Prasad
and Simmons, 2003; Post and Prommer, 2007]. It was
adopted by Xie et al. [2010] to investigate the effect of
time-variant solute loading upon natural convection in po-
rous media. Xie et al. [2010] pointed out that the classic
Elder problem is more relevant to natural salt lake settings
[e.g., Van Dam et al., 2009] because of the high density of
the imposed solute (1,200 kg m�3), equivalent to a salinity
of 360,000 mg L�1 [Adams and Bachu, 2002]. In order to
adjust the classic Elder problem to be more representative
of natural settings, two significant modifications were
made, which included replacing the thermal diffusion coef-
ficient with solute hydrodynamic dispersion and changing
the bottom concentration boundary condition to a no-solute
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flux boundary condition. Consequently, the modified disper-
sive Elder problem demonstrated a large number of unstable
fingers beneath the top boundary layer and is a more realistic
example for solute-driven natural convection. The reader is
referred to the work by Xie et al. [2010] for a detailed
description of the modified dispersive Elder problem. In the
current study, we adapted this dispersive Elder problem as
our natural free convection base case by two slight modifica-
tions in order to weaken aquifer-scale circulation and shorten
simulation times, as discussed in the rest of this section.

[10] In the dispersive Elder problem, Xie et al. [2010]
still retained the middle half concentration boundary condi-
tion on the top from the solute analogous Elder problem
[Voss and Souza, 1987] to supply solute to the groundwater
system. This boundary condition may, for example, repre-
sent a salt lake above an extensive groundwater system.
However, they found that this limited length of solute sup-
ply forms aquifer-scale circulation on the outer edges of
the finite solute source. Fingers, generated from the top
boundary layer, then not only migrate downward but move
toward the vertical center. This centralizing phenomenon is
likely to occur in salt lake settings [Wooding et al., 1997;
Simmons et al., 1999] and to cause large aquifer-scale cir-
culation associated with free convection. These large-scale
circulations will also interfere with the speeds of the local-
scale fingering phenomena. However, the objective of the
current study is to conduct a systematic analysis of free
convective fingering speeds, without the complicating
effects of aquifer-scale circulation that occurs in the classic
Elder problem. Therefore, a concentration boundary condi-
tion across the entire top boundary, similar to previous
studies [e.g., Post and Kooi, 2003; Riaz et al., 2006], was uti-
lized in the current study to eliminate the effects of aquifer-
scale circulation on free convective speeds and to therefore
produce uncontaminated results.

[11] Xie et al. [2010] extended the vertical dimension of
the classic Elder problem from 150 to 600 m to maximize
opportunities to observe finger behavior. This large-scale
model required long runtimes because of the increase in Ra
induced by the extension of model depth. In the current
study, numerical models were implemented stochastically
(30 realizations for each case) in order to assess behavior in
a statistical sense (discussed in section 2.6). In order to
reduce runtimes, a smaller length scale of 100 m was
adopted for both the horizontal and vertical dimensions of
the model. The conceptual model for this modified Elder
problem is shown in Figure 1, and the corresponding pa-
rameters that are required to simulate this case using
FEFLOW are presented in case BASE in Table 1. The gov-
erning equations employed by FEFLOW are given in
Appendix B. The current modified Elder problem employs
a homogeneous and isotropic porous medium.

[12] The current natural convection system is character-
ized by Ra ¼ 3.4 � 105, which is much greater than the
critical Ra of 0, the onset criterion of free convection in the
classic Elder problem. This critical Ra of 0 was recently
demonstrated by van Reeuwijk et al. [2009], who analyzed
the solute flux behavior through the source zone in
response to the variation in Ra. Their analysis indicates that
a small presence of salt might trigger free convection. Vig-
orous physical instabilities are therefore expected because
of this large Ra.

2.2. Numerical Experiments
[13] Ten experimental cases, each comprising 30 indi-

vidual simulations, were designed to investigate the varia-
tion in fingering speeds in response to the change in three
factors that may impact finger penetration, which are ma-
trix permeability k, effective porosity ", and mechanical
dispersion D�.

[14] Natural settings are typically characterized by wide
ranges in k, thereby producing a wide spectrum of Ra
values, indicating different degrees of physical instability.
In order to examine the effect of k on fingering speeds at
various extents of physical instability, k (MP1 and MP2 in
Table 1) was chosen to be varied in a similar fashion to that
done by Post and Kooi [2003].

[15] In solute transport " plays an inverse role through
void spaces in porous media, whereby small " will cause
faster groundwater movement and will subsequently allow
a greater amount of solutes to flow. It may significantly
influence fingering speeds if Vc is the appropriate quantity.
Therefore, we wanted to carefully check the effect of ", and
" was varied to two different values, 0.01 (EP1) and 0.4
(EP2) (Table 1), to clarify its role in fingering speeds. Note
that even though " ¼ 0:01 is slightly unrealistic in accord-
ance with the associated k value, it is still useful to test this
value in a theoretical sense within the model.

[16] D� is composed of two components, i.e., longitudi-
nal dispersivity �L and transverse dispersivity �T [Bear,
1972]. In laboratory-scale Hele-Shaw cell or sand tank
experiments of free convection, D� is usually neglected [e.g.,
Post and Simmons, 2010] or assumed to be on the same order
of magnitude as molecular diffusion [e.g., Simmons et al.,
1999] because of the small spatial scale and homogeneous
settings. In a numerical experiment with a large length scale,
D� may have a strong impact on the evolution of descending
fingers and should be taken into account. In order to identify

Figure 1. The geometry and boundary conditions of the
natural convection in a closed system, adapted from Xie
et al. [2010].
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the individual impact of both �L and �T, we reduced �L by 1
order of magnitude (case MD1) and increased �T by 1 order
of magnitude (case MD2) on the basis of case BASE, accord-
ing to the empirical relationship between longitudinal disper-
sivities and modeling length scales [Schulze-Makuch, 2005],
as seen in Table 1.

[17] Note that the variation in parameters resulted in a
wide spectrum of Ra, thereby causing different degrees of
physical instability. It is expected that fingers in the differ-
ent systems will therefore reach the bottom within various
times. Because of the requirement of a stochastic imple-
mentation, time scales for various cases were allowed to
vary accordingly in order to reduce total runtimes provided
that the measurable diagnostic COM (section 2.5) can reach
a relatively steady state. Therefore, we simulate case MP1
for 50 years, cases MP2 and EP1 for 1 year, and all other
cases for 10 years, as noted in Table 1.

2.3. Random Perturbations
[18] In real-world groundwater systems, unstable fluid

flow is usually triggered by geologic heterogeneity and/or
fluid heterogeneity, e.g., pore-scale and regional-scale het-
erogeneities in permeability distribution, small variations
in salinity due to irregular evaporation and surface temper-
ature. Hence, it is expected that such perturbations may be
spatiotemporally variable. They are also extremely diffi-
cult, if not impossible, to quantify in practice.

[19] However, in groundwater modeling, triggering
physical instabilities is often reliant on numerical perturba-
tions arising from local truncation and round-off errors.
This dependency is often unreliable and uncontrollable
because those numerical perturbations are unrealistic and
not easily quantified. Horne and Caltagirone [1980] called
for the consideration of small nondeterministic perturba-
tions to overcome the seemingly perfect mathematical solu-
tions to nonlinear problems in a numerical study of
examining the effect of triggering physical instabilities in
thermal convection plume patterns. Numerical simulations
[e.g., Simmons et al., 1999; Post and Simmons 2010] have
shown that fingers are initiated from outer edges of a solute
boundary and are different from laboratory observations
without considering small perturbations across the bound-
ary layer. Hence, random perturbations were incorporated
to trigger early time free convective behavior along the

boundary layer. A small random perturbation function was
added to the entire top concentration boundary in order to
better represent random system behavior and trigger physi-
cal instabilities [e.g., Simmons et al., 1999; Riaz et al.,
2006]. The perturbation function is adopted from Simmons
et al. [1999] and is given by

CnodeðtÞ ¼Cdenseþ
1

100
ðCdense�C0Þ rand ðt;0Þ� 0:5½ � ð0 < t < TÞ;

ð3Þ

where Cnode(t) is the normalized concentration of a node at
the top boundary at time t, Cdense and C0 are the normalized
concentrations of dense water and base reference water,
respectively, rand (t,0) is a random function used for gener-
ating fractions uniformly distributed between 0 and 1, and T
is the total simulation time depending on modeling cases. A
systematic comparison of the results associated with differ-
ent amplitudes of perturbations (0%, 0.5%, 1%, and 2%)
indicates that this perturbation amplitude (0.5%) is suffi-
ciently small and reasonable to trigger fingers at early stages
without leading to strong influence at later stages. This ran-
dom perturbation was implemented in all simulations.

[20] Because of the density effect, each free convective
system is characterized by multiple solutions such that fin-
gering speeds have slight variability. In order to rigorously
analyze the general trends of fingering speeds and the cor-
responding variability, statistical results (i.e., mean and
standard deviation) are computed. The incorporation of the
random perturbation method is a critical precursor to using
the necessary stochastic approach, which is described fur-
ther in section 2.6.

2.4. Spatial and Temporal Discretization
[21] It is commonly recognized that adequate grid sizes

and time steps are necessarily required to minimize numeri-
cal perturbations and dispersion that arise from truncation
and round-off errors. The common criterion to determine
grid discretization is the mesh Péclet number Pe � �L=�L
< 2 [Diersch and Kolditz, 2002], where �L is the transport
distance between two sides of an element measured in the
direction of groundwater flow and �L is the longitudinal
dispersivity. In the current study, rectangular cells are used,
and the discretization comprises �x ¼ 0:5 m horizontally

Table 1. Parameters Adopted in FEFLOW Simulationsa

Experimental Case

BASE MP1 MP2 EP1 EP2 MD1 MD2 MD3 MD4 MD5

Model depth H (m) 100 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Model length L (m) 100 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gravitational acceleration g (m s�2) 9.8 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic viscosity � (10�3 kg m�1 s�1) 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Density difference �� (kg m�3) 200 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Matrix permeability k (10�13 m2) 4.85 0.485 48.5 . . . . . . . . . . . . . . . . . . . . .
Diffusion coefficient D0 (10�9 m2 s�1) 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . .
Longitudinal dispersivity �L (m) 1 . . . . . . . . . . . . 1 10 5 1 5
Transverse dispersivity �T (m) 1 . . . . . . . . . . . . 0.1 1 0.5 0.5 1
Effective porosity " 0.1 . . . . . . 0.01 0.4 . . . . . . . . . . . . . . .
Rayleigh number Ra (104) 34 3.4 340 340 8.5 . . . . . . . . . . . . . . .
Simulation time T (years) 10 50 1 1 10 10 10 10 10 10

aExperimental case names containing MP, EP, and MD refer to cases with changes in matrix permeability, effective porosity, and mechanical disper-
sion, respectively. A set of dots ( . . . ) indicates that the parameter is unchanged from that in case BASE.
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and �y ¼ 0:25 m (0 < y < 10 m) and �y ¼ 0:5 m (y >
10 m) vertically. This discretization scheme produces
44,421 nodes, 44,000 elements, and a maximum Pe of
about 0.5. This level of discretization achieved grid conver-
gence based on several macroscopic diagnostics, including
total solute mass, vertical center of solute mass, and solute
flux across the top solute mass boundary, and is used in all
simulations. A fully implicit, varying time-stepping scheme,
allowing manually specified time steps, was applied to nu-
merical models [Diersch, 2005]. An initial time step of 0.01
day and a maximum time step of 1 day were utilized to
restrict the time-stepping scheme. The selection of specific
time steps in each case is relatively arbitrary but was modi-
fied accordingly to ensure mathematical convergence was
achieved.

2.5. Measurable Diagnostics
[22] A highly unstable system is characterized by an os-

cillatory regime where occurrence and disappearance of
physical instabilities may occur continuously [Diersch and
Kolditz, 2002]. It is therefore difficult to trace the move-
ment of one single finger, which might coalesce with other
fingers or disappear due to a reduction in solute reinforce-
ment. More reliable characteristics are required to represent
a continuous descending behavior of fingers. Previous stud-
ies have demonstrated that different diagnostics may result
in differing fingering speeds. In the current study, in order
to present a thorough analysis, we adopted two diagnostics,
DPF [e.g., Riaz et al., 2006] and COM [e.g., Prasad and
Simmons, 2003], to analyze behavior.

[23] DPF is the deepest position of the interface between
the intruding solute plume and ambient groundwater and is
defined using the concentration of C ¼ 0.01. COM is the
vertical center of mass of the salt plume and is integrated
across the entire model domain (Appendix C). Both diag-
nostics are measured from the top of the domain. It is
expected that COM provides a slower but more reliable fin-
gering speed than DPF because of its integrating effect.
Note that Post and Kooi’s [2003] empirical results indicate
that fingering speeds (defined in a similar fashion to DPF)
decrease with an increase in the concentration of measured
isochlors. However, we intend to analyze the upper bound
on the spectrum of fingering speeds and have therefore
chosen a very small, but discernible, concentration value
for analysis. After systematically comparing fingering
speeds for a number of isochlors in a few test runs, we
found C ¼ 0.01 represents a reliable indicator of the upper
bound of the spectrum of fingering speeds.

[24] Fingering speeds can be analyzed through linear
approximation by finding the best fitted straight lines in
DPF-time and COM-time graphs. We use UDPF and UCOM
to represent the linearly approximated fingering speeds
from DPF and COM, respectively. It should be noted that
UDPF and UCOM can only give constant fingering speeds in
each realization because of the limitation of the approach
and cannot explicitly demonstrate the variation in speeds.
Hence, we consider the instant speeds of DPF and COM
(i.e., SDPF and SCOM, Appendix C) at different times by
calculating the finite difference derivative of these varia-
bles over time. The terms instantaneous speed of DPF
(SDPF) and instantaneous speed of COM (SCOM) are used
to distinguish the derivative approach from the linear

approximation approach. In the stochastic study (discussed
in section 2.6), SDPF and SCOM are capable of evaluating
the time-varying general trends of fingering speeds and
their corresponding variability.

2.6. Stochastic Implementation
[25] The complicated nature of fingering processes leads

to differences between fingering realizations, and hence,
multiple realizations are needed to develop a sense of the
variability that might be encountered because of this ran-
domness. A stochastic approach was utilized in this study
to evaluate fingering speeds in a statistical sense. Since the
random perturbation function was imposed to the entire top
boundary, running one specific case at different times can
obviously produce different solutions and fingering speeds.
Therefore, one model can be implemented 30 times in
order to obtain a distribution of results as per Prasad and
Simmons [2003]. According to probability theory [Kreyszig,
1988], 30 samples can yield a confidence interval of plus or
minus two standard deviations (62�) at a confidence level
of 95%. A relatively small standard deviation across sto-
chastic simulation sets indicates small variability and high
reproducibility of fingering speeds. It was expected that
variability in COM would be smaller than the variability in
DPF because of the integrating effect of the former diag-
nostic. Note that the stochastic results do not present the
exact behavior of fingering speeds, but rather demonstrate
the overall trends represented by the mean values (�SDPF
and �SCOM) and the corresponding variability as repre-
sented by standard deviations (�SDPF and �SCOM).

3. Results and Discussion
3.1. A Preliminary Analysis

[26] Figure 2 demonstrates the comparison of DPF devel-
opment of C¼ 0.01 to C¼ 0.1, 0.2, and 0.6 in one realization
of case BASE. Although C ¼ 0.01 is an order of magnitude
smaller than C ¼ 0.1 and 0.2, the corresponding behavior of
DPF is quite similar to others and is characterized by approxi-
mately linear descent. DPF of C ¼ 0.6, however, demon-
strates strong oscillation due to fluid entrainment before
starting to descend linearly at around 5 years. It becomes
clear that DPF of C ¼ 0.01 is more reliable and adequate to
capture the advance of fingers and provide stable results.

[27] Figure 3 compares the behavior of DPF in cases with
different perturbations, grid discretization, and length scales.
Results show very close trends to case BASE (Figure 5a)
and therefore indicate that our current setting is appropriate
to carry out simulations with reasonable accuracy.

[28] Plume patterns from five realizations in case BASE
and at various simulation times are illustrated in Figure 4.
Plume patterns are clearly different between simulations
because of the inherent randomness, as expected. However,
DPF seems to reach a relatively consistent depth across the
five simulations at any specific time. After the salt plume
reached the bottom no-flow boundary, the system started to
fill with solute, and COM tended toward a steady state value.
This characteristic of free convective behavior that we
observed in our study is in agreement with simulations of
CO2 sequestration in a deep aquifer performed by Moortgat
et al. [2011], who developed a higher-order numerical
method for multiphase flow.
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[29] Variation in fingering speeds, however, can be
observed both within and between models. DPF in Figure 4c,
for instance, was slightly deeper than in Figure 4b at both
0.85 and 1.75 years, but the relation was reversed at 2.85
years. This is because large structures were formed later in
Figure 4b to strengthen the finger penetration, whereas fin-
gers in Figure 4c were comparatively discrete and inde-
pendent such that they appeared to move at a stable speed.
Fingering speeds of individual fingers within a model
appeared to be more complicated because of strong circula-
tion associated with free convection. Fingers may diminish
because of coalescence with a neighboring finger, forming
a bigger one (e.g., finger number decreased dramatically
from 19 at 0.27 years to 9 at 0.85 years in Figure 4a), or
may become retarded because of upwelling effects from
nearby fingers (e.g., the finger in the vertical center in
Figure 4e did not penetrate much from 1.75 to 2.85 years).
This clearly demonstrates that it is difficult (and virtually
impossible) to quantify fingering speeds by measuring the

descent of every individual finger because of a strong free
convective process, and therefore, some commonly used
and easily accessed plume characteristics, such as DPF and
COM adopted in this study, are, indeed, required to repre-
sent the speed of free convective fingering.

[30] Figure 5 illustrates the evolution of DPF and COM
and the corresponding SDPF and SCOM of the case illus-
trated in Figure 4a. On the whole, DPF and COM present
approximately linear trends, except that later COM behavior
asymptotically approaches the vertical center of the ground-
water system because of the accumulation of salt in the sys-
tem as the model domain begins to fill up with salt (Figure
5a). By fitting straight lines to both DPF-time and COM-
time curves, we determined constant representative finger-
ing speeds as follows: 36 m yr�1 for DPF and 12 m yr�1

for COM.
[31] In contrast, SDPF and SCOM in Figure 5b reveal

that fingering speeds of physical instabilities are not simply
near linear but are rather oscillatory throughout the

Figure 2. The development of fingering speeds based on four different C values (i.e., 0.01, 0.1, 0.2,
and 0.6). Isochlors at (a) 0.98, (b) 3.01, and (c) 5.01 years. Gray color scales are used to assist in distin-
guishing different isochlors. (d) The evolution of DPF with time for all C values.
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simulation, as also seen in the work by Post and Kooi [2003].
Four important stages can be observed from the behavior of
SDPF in Figure 5b. At early times, SDPF increased briefly in
the process of finger formation to 40 m yr�1 at around 0.27
years, followed by progressive reduction mainly due to the
reduction of the density contrast between the finger and
ambient groundwater induced by dispersion and diffusion
effects, as explained by Post and Kooi [2003]. Surprisingly,
after about 1.75 years, SDPF suddenly increased back to a
high fingering speed (43 m yr�1) before gradually dropping
again because of both the dispersion-diffusion effect and
the bottom boundary effect. The cause of the sudden
increase was that another finger overtook the leading posi-
tion of the current one because of stronger penetration
capability (comparing plume patterns at 1.75 and 2.85
years in Figure 4a). Finger coalescence is also likely to
result in the same increase in SDPF, both in other realiza-
tions (not shown here) and as seen by Post and Kooi
[2003]. After DPF reached the bottom, causing the termina-
tion of SDPF, solutes started to accumulate in the system
and subsequently led to the decrease in SCOM to zero (i.e.,
the system stabilized), as expected. Overall, the variation in
SCOM is less oscillatory than SDPF because of its integrat-
ing effect.

[32] From the comparison, it is clear that the linear
approximation can be used to make an approximate assess-
ment of the fingering speeds in a free convective ground-
water environment and to further evaluate the speed of
aquifer contamination. But such an approximation obvi-
ously leaves out the details of time-varying fingering
speeds. For the purpose of exploring the variability of fin-
gering speeds, the detailed SDPF and SCOM diagnostics
were considered.

3.2. The Effect of Permeability k

[33] Figure 6 shows the development of means and stand-
ard deviations of both SDPF and SCOM in cases BASE

(k ¼ 4.85 � 10�13 m2), MP1 (k ¼ 4.85 � 10�14 m2), and
MP2 (k ¼ 4.85 � 10�12 m2). As a whole, Figure 6 clearly
shows that the increase in k causes both SDPF and SCOM
to increase by the same magnitude when comparing the
magnitude of vertical axes of three graphs; �SCOM appears
to be more stable and reliable than �SDPF because of its
smoother trend and smaller variation in the corresponding
standard deviation.

[34] Two evident features can be observed at early and
later times from the behavior of �SDPF. At early times (i.e.,
the processes of finger formation), �SDPF gradually
increases because of the penetration of the boundary layer
followed by the formation of unstable fingers, as expected.
Furthermore, �SDPF seems to be somewhat sensitive to the
small random perturbations at the commencement of each
case in comparison to later time behavior and therefore
produces minor oscillations in Figures 6a and 6b. Initial os-
cillation is not observed for �SDPF in Figure 6c because fin-
gers formed rapidly in case MP2 because of the stronger
nonlinear dynamics associated with the higher Ra of
3.4 � 106. At later times, �SDPF in Figure 6 demonstrates
globally decreasing trends because of the reduction of the
density difference between fingers and ambient ground-
water induced by diffusive-dispersive losses and the grow-
ing influence of the bottom boundary, which retards free
convection. It should be noted that an apparently short-
lived increase in �SDPF can be observed at around 11 years
in Figure 6a, caused by the formation of large structures.
In comparison, �SDPF in Figure 6c shows a rapid rise to
450 m yr�1 at around 0.06 year as a result of finger coales-
cence and a subsequent quick recovery, most likely due to
the influence of other competitive fingers.

[35] In contrast, �SCOM in Figure 6 shows similar behav-
ior (i.e., an increase) to �SDPF at early times but different
(i.e., short-lived decrease followed by longer-lived increase)
at later times before fingers reached the bottom. The short-
lived decrease is mainly caused by lateral finger interac-
tion, which slows down the overall vertical penetration,
whereas the following longer-lived increase is attributed to
the continuous solute injection, which either forms new fin-
gers or reinforces existing fingers. Apparently, the bottom
boundary effects do not have as strong an influence on COM
as they do on DPF. Because of the restriction of fluid to flow
outside of the system, solute starts to accumulate within the
system after fingers reach the bottom. This process causes
the decrease in SCOM asymptotically to 0 m yr�1 and the
gradual reduction of solute flux entering the system through
the top boundary.

[36] Note that Figure 6 demonstrates the same general
trends of each diagnostic in all three cases irrespective of k
values. This feature confirms that speed of free convective
fingering is a linear function of k as shown in Uc (or Vc).
This feature is also consistent with the simple comparison
of DPF based on one realization of each case (Figure 7).
DPF in cases MP1, BASE, and MP2 reaches the system
bottom at 27.5, 2.84, and 0.290 years, respectively, and
therefore produces corresponding fingering speeds at 3.78,
36.0, and 335 m yr�1 through linear approximation, with
about an order of magnitude difference.

[37] Both �SDPF and �SCOM in Figure 6 illustrate the vari-
ability of SDPF and SCOM at every time step. Neither
�SDPF nor �SCOM presents obvious trends of variability

Figure 3. Comparison of deepest plume front (DPF) ver-
sus time: curve a, a realization of case BASE with 0.5%
random perturbation to the top boundary condition; curve
b, same as curve a except no random perturbation; curve c,
same as curve a except 1% random perturbation; curve d,
same as curve a except globally refined grid elements; curve
e, same as curve a except double lateral length scale; curve
f, same as curve a except double vertical length scale.
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Figure 4. The demonstration of plume patterns in five different realizations of case BASE at various
simulation times. Each column represents one realization of case BASE.

Figure 5. The development of quantitative diagnostics : (a) DPF and center of solute mass (COM)
versus time and (b) instantaneous speed of DPF (SDPF) and instantaneous speed of COM (SCOM)
versus time, corresponding to Figure 4a.
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because of the inherent highly nonlinear dynamics, but they
do show very small standard deviation values compared to
the corresponding mean at any specific time. For instance, the
maximum �SDPF can be observed at 0.79 m yr�1 (�SDPF ¼
3:37 m yr�1) at 18.63 years in case MP1, 7.22 m yr�1

(�SDPF ¼ 30:49 m yr�1) at 2.44 years in case BASE, and
72.12 m yr�1 (�SDPF ¼ 331:21 m yr�1) at 0.20 year in case
MP2. The small variability in comparison to the mean values
implies that (1) fingering speeds can be reasonably repro-
duced and (2) one single model can be utilized to predict, at
least to a first-order estimate, the fingering speeds. It is also
evident that �SCOM appears to be more stable and reliable
than �SDPF because �SCOM tends to remain very close to 0 m
yr�1, meaning little variability in SCOM. Thus, a plume
characteristic involving spatial integration may provide better
prediction results than one that is sensitive to local-scale
behavior (e.g., COM is better than DPF in a predictive sense).

3.3. The Effect of Effective Porosity �
[38] Figure 8 presents the descent of DPF with time in

three cases where " was varied from BASE (" ¼ 0:1) to
EP1 (" ¼ 0:01) and EP2 (" ¼ 0:4), respectively. Evidently,
the increase in " from case EP1 to cases BASE and EP2

caused the decrease in time for DPF to reach the bottom by
nearly the same magnitude. For instance, DPF reached a
depth of 80 m at 9.45, 2.35, and 0.25 years for " ¼ 0:4, 0.1,
and 0.01, respectively. Even though fluctuations of finger-
ing speeds can also be seen in Figure 8 from the DPF-time
curve, the overall tendency can be linearly approximated
as a constant SDPF and adequately utilized to elucidate
the role of " in controlling fingering speeds. Slopes (i.e.,
approximately 330.7, 33.6, and 8.3 m yr�1 corresponding
to cases EP1, BASE, and EP2, respectively) therefore dem-
onstrate that " does have an inverse impact on fingering
speeds and must therefore be incorporated into the denomi-
nator of fingering speed formula, as suspected. This is,
however, not routinely done in the existing literature.

[39] The statistical results of fingering speeds in cases
EP1 and EP2 demonstrate very similar trends to cases MP1
and MP2 and are therefore not shown here.

3.4. The Effect of Dispersion Db

[40] Figure 9 illustrates the plume patterns of each real-
ization of case MD1 (�L ¼ 1 m, �T ¼ 0:1 m) and case
MD2 (�L ¼ 10 m, �T ¼ 1 m) at different times in compari-
son to case BASE (�L ¼ 1 m, �T ¼ 1 m). The reduction in

Figure 6. The variation in means and standard deviations of both SDPF and SCOM versus time in
(a) case MP1 (k ¼ 4.85 � 10�14 m2), (b) case BASE (k ¼ 4.85 � 10�13 m2), and (c) case MP2 (k ¼ 4.85
� 10�12 m2).
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�T weakened the lateral dissipation of the solute, thereby
causing the formation of narrower fingers, as observed in
Figure 9b, whereas the growth of �L strengthened the verti-
cal spread of solute such that fingers appeared to be more
balloon shaped and dispersive (Figure 9c). The global fin-
gering speeds of both cases seem to be slower than case
BASE because DPF only penetrated around three quarters
of the depth within 2.85 years (Figures 9b and 9c) by which
time DPF in case BASE has reached the bottom of Figure
9a. The decrease in fingering speeds in case MD2 is intui-
tively reasonable because of the stronger dissipation capa-
bility of the system induced by the increase in �L.
However, the reduction in fingering speeds in case MD1 is
somewhat counterintuitive as the smaller dissipation capa-
bility associated with the reduction in �T should result in
faster finger penetration. This phenomenon is probably
attributed to a smaller density difference, indicated by
lower solute contours within finger tips, because smaller �T
established narrower transport conduits, which allow only a
small amount of solute mass to spread downward. The
detailed analysis of the effects of dispersion is presented
later in section 3.4.

[41] Figure 10 compares and contrasts mean speeds and
the corresponding standard deviations of both SDPF and

SCOM in cases BASE, MD1, and MD2. As expected, both
cases MD1 and MD2 produced similar trends for �SDPF and
�SCOM as case BASE during the period from the formation
of relatively independent fingers to the time fingers reached
the bottom (roughly from 0.5 to 3.5 years in Figures 9a and
9b). Consistent with the visual inspection in Figure 8, both
the decrease in �T to 0.1 m (case MD1) and the increase in
�L to 10 m (case MD2) from 1 m (case BASE) led to the
decrease in �SDPF and �SCOM. However, unlike the response
to variation in matrix permeability k and effective porosity
", fingering speeds do not change dramatically in similar
magnitudes to the change of dispersivities. This clearly
demonstrates that fingering speeds are far less dependent
on dispersivities than other parameters comprising Vc. Dis-
persivity clearly appears to be a second-order effect.

[42] Both �SDPF and �SCOM demonstrate decreasing fin-
gering speeds from relatively high speeds in cases MD1
and MD2 at the very beginning (from 0 to 0.5 year), as
opposed to case BASE. This is mainly caused by the ani-
sotropic dispersion (stronger vertically than laterally) by
which fingers can be easily and quickly triggered by

Figure 7. The comparison of DPF development based on
one realization of cases MP1 (k ¼ 4.85 � 10�14 m2), BASE
(k ¼ 4.85 � 10�13 m2), and MP2 (k ¼ 4.85 � 10�12 m2).

Figure 8. The comparison of DPF development in cases
with different effective porosity values: BASE (" ¼ 0:1),
EP1 (" ¼ 0:01), and EP2 (" ¼ 0:4).

Figure 9. The demonstration of plume evolution in one
realization of (a) case BASE (�L ¼ 1 m, �T ¼ 1 m), (b)
case MD1 (�L ¼ 1 m, �T ¼ 0:1 m), and (c) case MD2
(�L ¼ 10 m, �T ¼ 1 m).
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small perturbations once the boundary layer is estab-
lished. Subsequently, lateral interaction retarded the pene-
tration of fingers, thereby causing a reduction in fingering
speeds.

[43] The later �SCOM starts to approach 0 m yr�1 asymp-
totically because of the accumulation of salt and stabilizing
of plumes, but the time for �SCOM to reach 0 m yr�1 is de-
pendent on the overall degree of fingering speeds; the com-
parison in Figure 10b shows that MD1 is preceded by
BASE but followed by MD2, consistent with fingering
speeds during the finger penetration period. Interestingly,
SCOM in MD1 tends to asymptote to 0 m yr�1 from the
negative direction. This is attributed to the relatively small
dispersivities, which established small conduits to transport
and accumulated salt at the bottom (comparing plume pat-
terns at 6.0 years between Figures 9b and 9c).

[44] Figures 10c and 10d present the temporal variability
of SDPF and SCOM, respectively. Neither plot reveals
clear trends about the relationship between fingering speeds
and dispersivity due to oscillatory behavior of �SDPF and
�SCOM. However, as in the counterpart in Figure 6, both
�SDPF and �SCOM here also show very arbitrary but small
variability at all times (maximum of 7.22 m yr�1 in Figure
10c and maximum of 3.03 m yr�1 in Figure 10d), inde-
pendent of the choice of dispersivity values. This implies
that irrespective of �L and �T values, there is good reprodu-
cibility and predictive capability for fingering speeds in the
form of SDPF and SCOM, and SCOM appears to be more
reliable than SDPF because of the integrating effect, con-
sistent with earlier results in section 3.2.

[45] Table 2 presents statistical results of both UDPF and
UCOM through linear approximation in order to further

Figure 10. The comparison of means and standard deviations of SDPF and SCOM in cases BASE
(�L ¼ 1 m, �T ¼ 1 m), MD1 (�L ¼ 1 m, �T ¼ 0:1 m), and MD2 (�L ¼ 10 m, �T ¼ 1 m): (a) �SDPF
versus time, (b) �SCOM versus time, (c) �SDPF versus time, and (d) �SCOM versus time.

Table 2. Statistical Results of Fingering Speeds of Both UDPF and UCOM With Various Longitudinal Dispersivity �L and Transverse
Dispersivity �T Through Linear Approximationa

�T (m)

�L (m)

1 5 10

UDPF (m yr�1) UCOM (m yr�1) UDPF (m yr�1) UCOM (m yr�1) UDPF (m yr�1) UCOM (m yr�1)

0.1 MD1, 27.25 (2.13) MD1, 8.82 (0.76)
0.5 MD4, 33.42 (2.97) MD4, 11.74 (0.94) MD3, 21.92 (2.23) MD3, 7.56 (1.11)
1 BASE, 33.24 (3.06) BASE, 10.10 (1.03) MD5, 24.82 (2.05) MD5, 8.38 (0.93) MD2, 20.70 (2.44) MD2, 4.99 (0.85)

aIn each case, the mean value is presented after the model name and followed by the standard deviation value in parentheses.
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elucidate the general trends of the relationship between D�

and fingering speeds. Several features can be observed from
the results: (1) both � UDPFð Þ and � UCOMð Þ are relatively
small compared to � UDPFð Þ and � UCOMð Þ, respectively,
consistent with previous results of SDPF and SCOM; (2)
� UCOMð Þ appears to be 3 times lower than � UDPFð Þ, consist-
ent with Figure 10; (3) increasing �L (third row of Table 2)
leads to the reduction of fingering speeds; (4) increasing �T
(first column) results in the increase followed by slight
decrease in fingering speeds; (5) increasing both longitudi-
nal and transverse dispersivities by the same magnitude to-
gether can cause the growth of fingering speeds (from MD2
to MD3 and MD1 diagonally upward). It is clear that �L
plays a more important role than �T because it causes a
direct impact on the dissipation of solute along the path-
ways of finger movement. More importantly, varying �L
and �T together or individually by an order of magnitude
does not cause significant differences in fingering speeds
(there is approximately a factor of 2 between maximum and
minimum mean speeds for both UDPF and UCOM). In com-
parison to the effect of the hydraulic conductivity (varying
with orders of magnitude difference), the dispersion effect
is much weaker and does not contribute to the bulk portion
of the variability of fingering speeds, and therefore, a factor
of 2 in dispersion-induced variability is probably accepta-
ble. This implies that fingering speeds can be accurately
predicted provided that the hydraulic conductivity and po-
rosity are well known. The uncertainty or variability seen in
all the diagnostics here is probably relatively small when
compared to the inherent uncertainty in hydraulic conduc-
tivity measurements in practice.

3.5. The Importance of the Density Effect
[46] Simmons [2005] stressed the importance of variable

density flow by stating that only 5% of seawater (35,000
mg L�1) salinity is required to achieve the equivalent driv-
ing force as a typical advective hydraulic gradient I0 ¼
0.001 (1 m head difference over a distance of 1000 m). In
the current study, the saltwater density (1200 kg m�3) is
equivalent to a salinity of 360,000 mg L�1 (an order of
magnitude higher than seawater) and is typically found at
sabkhas and playa lakes [e.g., Van Dam et al., 2009]. This
generates the equivalent driving density gradient I1 ¼
��=�0 ¼ 0:200, which is much stronger than I0. Hence, this
high density gradient is expected to play a much more sig-
nificant role in causing groundwater flow and solute trans-
port than typical advective hydraulic gradients.

[47] The relative importance of density effects was
investigated through obtaining the equivalent advective hy-
draulic gradient required to generate the same average lin-
ear velocity through advection as a fingering speed driven
by the density difference. The linear approximation result
of SDPF (36 m yr�1) in one realization of case BASE in
Figure 5a is taken as an example. By substituting this
SDPF and the corresponding matrix permeability (4.85 �
10�13 m2) and porosity (0.1) into the average linear veloc-
ity, the equivalent advective hydraulic gradient can be
obtained as I2 ¼ 0.024, an order of magnitude smaller than
I1. The large discrepancy between I1 and I2 indicates that in
order to achieve a fingering speed of the same magnitude
as an advective speed, the density gradient should be approx-
imately 10 times greater than the corresponding hydraulic

gradient. The ratio of I2 to I1 (0.12) is a corrective factor f
applied to adjust the theoretical fingering speed Vc to a real
fingering speed in this specific realization of case BASE,
i.e., real speed of fingering is f � Vc ; f is upper bounded by
1 in accordance with the characteristic convective velocity
(equation (A4)). The need for f arises because of several
physical phenomena, including (1) fluid entrainment of indi-
vidual fingers holding back the movement of fingers, (2) me-
chanical dispersion and molecular diffusion reducing the
density difference within fingers, and (3) upwelling of fluid
between neighboring fingers, which retards the penetration
of fingers. Furthermore, it should be indicated that f is also
impacted by the pressure (or potential) gradient, which is
commonly small in free convection but cannot be zero.
Without the pressure gradient occurring in all coordinate
directions, fingering (recirculation pattern of flow) and any
descent could not establish. This is a physical constraint
caused by mass and momentum conservation and is always
opposite to the density gradient in the vertical direction.

[48] The corrective factor f was further explored in Fig-
ure 11, which demonstrates the relationship between line-
arly approximated UDPF and UCOM and the corresponding
Vc from all simulations. Clearly, all results lie in the bot-
tom right triangle zone of each graph and therefore indicate
that fingering speeds are always smaller than the theoretical
value of Vc. The slopes of the trends provide general cor-
rective factors of 0.115 for UDPF and 0.034 for UCOM,
where UDPF is comparatively 3 times greater than UCOM,
consistent with previous results.

[49] It should be mentioned that this corrective factor of
UDPF ð f ¼ 0:115Þ is around half of the value ð f ¼ 0:22Þ
derived by Post and Kooi [2003] and about one fourth of
the value ð f ¼ 0:446Þ derived by Wooding [1969]. The dis-
crepancies in f most likely stem from the differences in
hydrogeologic settings, choice of measurable quantities,
and scale geometries. It is, however, clear that all existing f
values are lower than 1 (representing the theoretical finger-
ing speed), and they surprisingly appear to be within the
same comparable order of magnitude across different scales
and systems. Given the complexity of free convection, it is
impossible to find a universal f that is applicable to all set-
tings. Therefore, the current corrected fingering speed
(0.115 Vc) and the theoretical fingering speed (Vc) may
provide guidance on the lower bound and upper bound of
generic speeds of finger fronts. Both bounds are extremely
helpful for establishing first-order intuition for fingering
speeds and for designing measurements in laboratory and
field experiments; that is, the upper bound can be used to
design the frequency of the measurement, while the lower
bound can be used to determine the length of the measure-
ment of experimentation. Note that the effective Vc is not
appropriate for assessing seawater intrusion speed because
the velocity direction of the salinity wedge (horizontal) is
not aligned with the gravity direction (vertical).

[50] A preliminary comparison between 2-D and 3-D
models was conducted. Quantitative results of 3-D models
appear to be close to those of 2-D models on the basis of a
single simulation. However, this is computationally prohib-
itive, and it is hard to produce statistical results at this time
because of the stochastic nature of the study and the com-
putational burden associated with each numerical simula-
tion. Further study of 3-D effects in a stochastic framework
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is warranted to investigate fingering speeds in larger length
and time scales.

4. Summary and Conclusions
[51] Understanding the speed of free convective finger-

ing is important because it can establish fundamentally sig-
nificant intuition to predict the movement of unstable
fingers and provide guidance on detecting and/or monitor-
ing field-based transient free convective behavior. There
has been ongoing ambiguity regarding how to calculate the
speed of free convective fingering and in understanding
what the likely rates of fingering are in real field settings.
Unlike advective processes, the intuition and understanding
surrounding the speed of free convection processes in
groundwater are lacking. This is important for understand-
ing and predicting free convection processes in modeling,
laboratory, and field-scale settings. This paper has studied
the effect of different parameters on the speed of free con-
vective fingering in porous media using numerical simula-
tions. The fingering speeds were measured and analyzed in
the form of two important characteristics, deepest plume
front (DPF) and vertical center of solute mass (COM). A

perturbation-based stochastic approach was applied to
explore the variability of fingering speeds by quantifying
mean and standard deviation values of both descent rates of
DPF and COM (SDPF and SCOM, respectively) at different
times. We conclude our study with the following remarks.

[52] 1. Fingering speeds are dependent on various meas-
urable diagnostics that are characterized by continuous ver-
tical penetration due to the density effect (e.g., DPF and
COM), and therefore, a free convective system may produce
a spectrum of fingering speeds that is a function of meas-
ured diagnostics. It is observed that DPF monitoring of the
behavior of the most advanced interface between saltwater
and fresh water yields an upper bound of the spectrum of
fingering speeds, whereas COM displays a global trend of
fingering speeds that is always smaller than that obtained
from analysis of DPF.

[53] 2. On the basis of a linear approximation, both DPF
and COM yield relatively constant fingering speeds during
the vigorous finger penetration period (i.e., from the time
relatively discrete and independent fingers are formed to
the time finger tips reach the bottom of the system). But
analysis of instant speeds shows that the speed of DPF
(SDPF) tends to decelerate because of the sensitivity to the

Figure 11. The demonstration of relationships between (a) UDPF and Vc and (b) UCOM and Vc. Both
UDPF and UCOM are derived through the linear approximation approach.
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bottom boundary effect that constrains the fluid flow field,
while the speed of COM (SCOM) tends to accelerate
because of continuous reinforcement from the source zone.

[54] 3. Hydrogeologic parameters (permeability and po-
rosity) play significant roles in fingering speeds and must
necessarily be included to formulate the theoretical finger-
ing speed in a similar fashion to a hydraulically driven aver-
age linear velocity. Dispersion is also seen to be a second-
order effect (much weaker than permeability and porosity)
on fingering speeds. How the dispersion coefficient can be
included in the formula of the theoretical fingering speed
requires further systematic investigation.

[55] 4. Because of dispersion-diffusion, fluid entrain-
ment, and upwelling effects, the real fingering speeds are
always slower than the Vc. Therefore, Vc cannot be utilized
to predict a real fingering speed in a system unless being
evaluated in association with a corrective factor f, which is
likely to be around f ¼ 0.115 for DPF and f ¼ 0.034 for
COM on the basis of linear approximation in the current
study. Given the complexity of free convection, we
acknowledge that it is impossible to find a universal f, and
therefore, the current f is not generalizable to all various
settings. However, in combination with previous studies
[Wooding, 1969; Post and Kooi, 2003], f for speeds of the
finger front is most likely to be constrained by (0.115,
1.000), which is extremely helpful for establishing the first-
order intuition and designing the measurement of labora-
tory and field experiments. The upper bound (1.000) can be
used to design the frequency of the measurements on the
basis of the higher-speed estimate, while the lower bound
(0.115) based on the lower-speed estimate can be used to
determine the length of the overall experimental time run.
These are useful bounds for experimental design.

[56] 5. A perturbation-based stochastic analysis has dem-
onstrated that a single numerical model can be adopted to
predict the approximate speed of free convective fingering
because of the surprisingly small variability in both SDPF
and SCOM at all times. This critically indicates that finger-
ing speeds can be reasonably reproduced and are more pre-
dictable than may be suggested by their very complex and
semichaotic behavior. However, as it is commonly recog-
nized, the strongest uncertainty in hydrogeology stems from
the uncertainty in hydraulic conductivity, which may vary
over several orders of magnitude. In comparison to the vari-
ability of both SDPF and SCOM seen in this study, the
uncertainty of hydraulic conductivity is by far expected to
be the most significant contributor to the uncertainty in fin-
gering speeds. Therefore, if the hydraulic conductivity can
be accurately determined in the field, we expect that we can
make good predictions of fingering speeds with a single real-
ization of the system. This is an important finding because it
has not been evident in the literature whether or not finger-
ing speeds are reproducible and amenable to prediction.

[57] This study provides new insights into finger descent
by analyzing and clarifying the roles of different parameters.
The results can assist us in establishing a priori intuition
about the speed of free convective fingering and predicting
free convection behavior, which will ultimately be useful for
designing systems to monitor the transient fingering behav-
ior associated with environmental phenomena. Further work
should be undertaken to investigate the effects of source
length scales (e.g., representing different sabkha scales and

acting as a top concentration boundary condition), mass sup-
ply time scales (e.g., representing periods of saline inunda-
tions) on fingering speeds, and the dimensionality effect in
3-D models.

Appendix A: The Derivation of the Characteristic
Convective Velocity

[58] Darcy’s law considering density effect is formulated as

q ¼ �K � rhþ��

�0
e

� �
; ðA1Þ

where q ¼ "v is the Darcy velocity (a specific bulk flux),
with " being effective porosity and v being the pore (intrin-
sic) velocity; K is the hydraulic conductivity, rh is the
potential head gradient, �� is the density difference
between maximum density and base reference density, and
e ¼ �g/jjgjj is the gravitational unit vector. Assuming fluid
flow occurs in the gravity direction (i.e., g is aligned with
the vertical z axis) of a homogeneous and isotropic porous
medium and assuming there is no potential head gradient,
we obtain

q ¼
qx

qy

qz

2
4
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0

0

��=�0

2
4

3
5: ðA2Þ

[59] This can be written in a simplified form to derive the
characteristic convective (Darcy) velocity:

Uc ¼ qzj j ¼ K
��

�0
: ðA3Þ

[60] Usually, the intrinsic pore velocity is the right quan-
tity to measure instead of the bulk Darcy velocity. There-
fore, the characteristic convective velocity is given by
dividing " :

Vc ¼ qz="j j ¼ K
"

��

�0
: ðA4Þ

Appendix B: FEFLOW Governing Flow and
Transport Equations

[61] The governing equations in FEFLOW [Diersch,
2005] are composed of fluid mass, momentum, and solute
mass conservation equations. The fluid mass conservation
equation is given by

@ð"�Þ
@t
þr � ð"�vÞ ¼ "�Q�; ðB1Þ

where " is the effective porosity, � is the fluid density, and
Q� is the fluid mass source or sink. It is assumed that den-
sity is linearly proportional to concentration:

� ¼ �0 1þ ��

Cs � C0
ðC � C0Þ

� �
; ðB2Þ

where �0 is the initial density corresponding to the initial
concentration C0, C is the concentration, Cs is the maximum
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concentration, and �� is the density difference ratio between
maximum density and base reference density.

[62] The momentum conservation equation (i.e., Darcy’s
law) is given by

vþ k
"�
� ðrp� �gÞ ¼ 0; ðB3Þ

where k is intrinsic permeability, � is the dynamic viscos-
ity, p is fluid pressure, and g is acceleration due to gravity.

[63] The solute mass conservation equation is given by

@ð"CÞ
@t
þr � ð"CvÞ þ r � j ¼ Qc; ðB4Þ

where Qc is the solute mass source or sink and j is the Fick-
ian mass flux governed by Scheidegger-Bear’s dispersion
approach:

j ¼ �" ðD0 þ �T vk kÞIþ ð�L � �TÞ
v� v

vk k

� �
� rC; ðB5Þ

where D0 is the molecular diffusion coefficient, �L and �T
are the longitudinal dispersivity and transverse dispersivity,
respectively, and I is the unit (identity) tensor.

Appendix C: Mathematical Definitions of
Diagnostics

[64] The mathematical definition of COM is given as

COM ¼ 1
M

Z
�ðyÞydV ; ðC1Þ

where M is the total solute mass and � yð Þ is the integral
density at the depth y. Instant speeds of DPF and COM are
given by

SDPF ¼ d DPF
dt

ðC2Þ

SCOM ¼ d COM
dt

: ðC3Þ

[65] The mean and standard deviation of SDPF are given by

�SDPF ¼

Pn
i¼1
ðSDPFÞi

n
ðC4Þ

�SDPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðSDPFÞi � �SDPF
� �2

n� 1

vuuut
; ðC5Þ

where n is the number of samples in a set of models; n ¼ 30
in this study. The mean and standard deviation of SCOM are
given by

�SCOM ¼

Pn
i¼1
ðSCOMÞi

n
ðC6Þ

�SCOM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðSCOMÞi � �SCOM
� �2

n� 1

vuuut
: ðC7Þ

Notation

x, y horizontal and vertical spatial coordinates,
respectively [L].

�x, �y horizontal and vertical element sizes,
respectively [L].

�L transport distance between two sides of an
element measured in the direction of groundwater
flow [L].

H, L depth and length of a model, respectively [L].
k permeability of a porous medium [L2].
rh potential head gradient (dimensionless).

g gravitational acceleration [L T�2].
e gravitational unit vector, equal to �g/jjgjj

(dimensionless).
� dynamic viscosity [M L�1 T�1].
" effective porosity (dimensionless).
�0 base reference fluid density [M L�3].
� fluid density [M L�3].

�� density difference between maximum density
and base reference density [M L�3].

�� density difference ratio of density difference to
base reference density (dimensionless).

K hydraulic conductivity of a porous medium
[L T�1].

C0 normalized base reference concentration (di-
mensionless).

C normalized fluid concentration (dimensionless).
Cs normalized maximum concentration (dimen-

sionless).
Cnode(t) normalized concentration of a node at the top

boundary at time t (dimensionless).
Cdense normalized concentration of dense water

(dimensionless).
rand (t,0) random function used for generating fractions

uniformly distributed between 0 and 1 (dimen-
sionless).

Q� fluid mass source or sink [T�1].
Qc solute mass source or sink [M L�3 T�1].

j Fickian mass flux [M L�2 T�1].
q Darcy velocity [L T�1].
v pore (intrinsic) velocity [L T�1].

Uc generalized characteristic convective (Darcy)
velocity [L T�1].

Vc characteristic convective velocity [L T�1].
p fluid pressure [M L�1 T�2].

Ra nondimensional Rayleigh number (dimen-
sionless).

D0 molecular diffusion coefficient [L2 T�1].
�L longitudinal dispersivity [L].
�T transverse dispersivity [T].
T time scale of a model [T].

Pe mesh Péclet number (dimensionless).
I unit (identity) tensor (dimensionless).

M total solute mass [M L�3].
f corrective factor (dimensionless).
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n number of samples in a set of models
(dimensionless).

DPF deepest plume front [L].
COM vertical center of solute mass [L].
SDPF the instantaneous speed of DPF [L T�1].

SCOM the instantaneous speed of COM [L T�1].
�SDPF mean of SDPF [L T�1].
�SDPF standard deviation of SDPF [L T�1].
�SCOM mean of SCOM [L T�1].
�SCOM standard deviation of SCOM [L T�1].
UDPF linear approximation of the speed of DPF

[L T�1].
UCOM linear approximation of the speed of COM

[L T�1].
� UDPFð Þ mean of UDPF [L T�1].
� UCOMð Þ mean of UCOM [L T�1].
� UDPFð Þ standard deviation of UDPF [L T�1].
� UCOMð Þ standard deviation of UCOM [L T�1].
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