HEAd '20
6th International Conference on Higher Education Advances

June 2-5, 2020
Valencia, Spain
Congress UPV
6th International Conference on Higher Education Advances (HEAd’20)

The contents of this publication have been evaluated by the Program Committee according to the
procedure described in the preface. More information at http://www.headconf.org/

Scientific Editors
Josep Domenech
Paloma Merello
Elena de la Poza
Raúl Peña-Ortiz

Cover design by Gaia Leandri

Publisher
2020, Editorial Universitat Politècnica de València
www.lalibreria.upv.es / Ref.: 6562_01_01_01

ISSN: 2603-5871
ISBN: 978-84-9048-811-9 (print version)
Print on-demand
DOI: http://dx.doi.org/10.4995/HEAD20.2020.11787

6th International Conference on Higher Education Advances (HEAd’20)
This book is licensed under a Creative Commons Attribution-NonCommercial-NonDervatives-4.0
International license
Preface

Josep Domenech¹, Paloma Merello², Elena de la Poza¹, Raúl Peña-Ortiz²
¹Universitat Politècnica de València, Spain, ²Universitat de València, Spain.

Abstract

The series of HEAd conferences have become a leading forum for researchers and practitioners to exchange ideas, experiences and research results relating to the preparation of students and the organization of higher educational systems. The sixth edition (HEAd’20) was celebrated during 2-5 June 2020. It was organized from Valencia, Spain; although held virtually because of the COVID-19 outbreak. This preface gives an overview of the aims, objectives and scope of HEAd’20, as well as the main contents of the scientific program and the process followed to select them.

Keywords: Higher education, innovative materials, educational technology, evaluation and assessment, globalization in education.
1. Preface to HEAd’20

This volume contains the selected papers of the Sixth International Conference on Higher Education Advances (HEAd’20), which was virtually organized from Valencia, Spain during 2-5 June 2020. Despite the COVID-19 outbreak, this sixth edition was a great success of participation and consolidates the series of HEAd conferences as a leading forum for researchers and practitioners to exchange ideas, experiences and research results relating to the preparation of students and the organization of higher educational systems.

The selection of the scientific program was directed by Paloma Merello, who led a team of 229 program committee members representing 50 countries in all five continents. Following the call for papers, the conference received 280 full paper submissions from 47 different countries. All the submitted papers were reviewed by at least two program committee members under a double blind review process. Finally, 121 papers were accepted as full papers for oral presentation during regular sessions. Additionally, 42 submissions were accepted for presentation in the innovative non-linear sessions, which allowed for increased interaction and participation. The program committee chair congratulates all the authors for having their papers accepted in the proceedings of such a competitive conference.

HEAd’20 also featured two keynote speakers that overviewed important and actual topics: Dr. César Ortega-Sánchez (Curtin University, Australia) talked about understanding students’ needs in the age of the Internet, relating this to the change in the learning process due to the mobility restrictions approved after the coronavirus outbreak. The second keynote speech was delivered by Dr. Janet Lord (Manchester Metropolitan University, United Kingdom) dealt with the transformative leadership for equity, social justice and change in higher education.

The main conference was preceded by the Special Interest Group symposium entitled Pedagogy for Higher Education Large Classes (PHELC). This virtual workshop, led by Ann Marie Farrell and Anna Logan, celebrated its second edition by focusing on the assessment for large classes.

Although virtually held, the conference was hosted by the Faculty of Business Administration and Management of the Universitat Politècnica de València, which has been recently ranked as the best technical university in Spain by the Academic Ranking of World Universities (ARWU) 2019.

The organizing committee would like to thank all of those who made this year’s HEAd a great success. Specifically, thanks are indebted to the invited speakers, authors, program committee members, reviewers, session chairs, presenters, sponsors, supporters and all the attendees. Our final words of gratitude must go to the Faculty of Business Administration...
and Management of the Universitat Politècnica de València for supporting, once again, the HEAd conference, making it possible to become a great event.

2. Organizing Committee

General chair
Josep Domènech, Universitat Politècnica de València

Vice-chair

Local organization chair
Elena de la Poza, Universitat Politècnica de València

Program committee chair
Paloma Merello, Universitat de València

Publicity chairs
Gareth Bramley, University of Sheffield
Daniela Zehetmeier, Lufthansa Aviation Training GmbH

Workshops chair
Raúl Peña-Ortiz, Universitat de València

PHELC Workshop chairs
Anna Logan, Dublin City University
Ann Marie Farrell, Dublin City University

Local organization
Eduardo Cebrián
Mónica Costa Alcaina
Eduardo Torán

3. Sponsors and Supporters

Universitat Politècnica de València
European Social Fund
Facultad de Administración y Dirección de Empresas
Departamento de Economía y Ciencias Sociales
4. Program committee

Lukman Ab. Rahim, Universiti Teknologi PETRONAS, Malaysia
Samuel Abramovich, University at Buffalo, USA
Mifrah Ahmad, Deakin University, Australia
Gokce Akcayir, University of Alberta, Canada
M. Ángeles Alcaide, Universitat Politècnica de València, Spain
Gabriella Aleandri, Roma Tre University, Italy
Filomena Almeida, ISCTE IUL - BRU, Portugal
Daniel Alonso-Martinez, Universidad de León, Spain
Francisco Alvarez, Universidad Autónoma de Aguascalientes, Mexico
Asier Aranzabal Maiztegi, University of the Basque Country, Spain
Azucena Arias-Correa, Universidad de Vigo, Spain
Jose Luis Arquero, Universidad de Sevilla, Spain
Linda Austin, RMIT, Vietnam/Australia
Vladimir Badenko, Peter the Great St.Petersburg Polytechnic University, Russia
Josefa Badía, Universitat de València, Spain
Mariasole Banno, University of Brescia, Italy
Alice Barana, University of Turin, Italy
Virginia Barba-Sanchez, University of Castilla-La Mancha, Spain
Elena Bárcena, UNED, Spain
Elvira Barrios Espinosa, Universidad de Málaga, Spain
Victoria Beck, University of Wisconsin Oshkosh, USA
Inmaculada Bel, Universitat de València, Spain
Evgeniia Beliauskene/Moldovanova, Tomsk Polytechnic University, Russia
José V. Benlloch-Dualde, Universitat Politècnica de València, Spain
Naiara Berasategui Sacho, University of the Basque Country, Spain
Maria Eliza Mattosinho Bernardes, Universidade de São Paulo, Brazil
Marnie Binder, California State University, USA
Nikolai Bolshakov, Peter the Great Saint Petersburg Polytechnic University, Russia
Ignacio Bosch Roig, Universitat Politècnica de València, Spain
Domenico Brunetto, Politecnico di Milano, Italy
Eliseo Bustamante, Universitat Politècnica de València, Spain
Marina Buzzi, IIT-CNR, Italy
María Caballer Tarazona, Universitat de València, Spain
Laura Cabeza-García, University of León, Spain
Marisol Calabor, University of Valencia, Spain
Sabrina B. Caldwell, The Australian National University, Australia
Javier Calvo Saiz, Universitat de València, Spain
Lourdes Canós-Darós, Universitat Politècnica de València, Spain
Carlos Carbonell Alcaina, Universitat Politècnica de València, Spain
Adolfo Carrillo Cabello, University of Minnesota, USA
Javier Casanoves-Boix, Valencian International University, Spain
Alberto Celani, Politecnico di Milano, Italy
Roberto Cervelló-Royo, Universitat Politècnica de València, Spain
Dimitris Chassapis, National & Kapodistrian University of Athens, Greece
Alberto Ciolfi, ANVUR, Italy
Elena Comino, Politecnico Torino, Italy
Erika Corradini, University of Southampton, UK
Tània Costa, EINA-UAB, Spain
Jami Cotler, Siena College, USA
John Cowan, Edinburgh Napier University, UK
Daniela-Maria Cretu, Lucian Blaga University of Sibiu, Romania
Jose Cruz Muñoz, University of Valencia, Spain
Michel Cukier, University of Maryland - College Park, USA
Diego Víctor de Mingo-López, University of Valencia, Spain
Annalinda De Rosa, Politecnico di Milano, Spain
Wietse de Vries, Benemérita Universidad Autónoma de Puebla, Mexico
Marilyn Dono-Koulouris, St. John's University, USA
Pablo Durán Santomil, USC, Spain
Ilona Dzenite, Riga Technical University, Latvia
Steve Eager, University of the West of Scotland, UK
Martin Ebner, Graz University of Technology, Austria
Baba El-Yakubu Jibril, Ahmadu Bello University, Nigeria
Yessica Espinosa Díaz, Universidad Autónoma de Baja California, Mexico
Alexander Fedotov, Peter the Great St.Petersburg Polytechnic University, Russia
Luís Fernandes, Universidade Nova de Lisboa, Portugal
Joaquim Filipe Ferraz Esteves Araujo, Universidade do Minho, Portugal
Sandro Nuno Ferreira Serpa, University of the Azores, Portugal
Margarida Figueiredo, University of Évora, Portugal
Sylwia Izabela Filipczuk-Rosińska, Polish Air Force University, Poland
Björn Fisseler, FernUniversität in Hagen, Germany
Silvia Florea, Lucian Blaga University of Sibiu, Romania
Nuno Flores, University of Porto, Portugal
Francesco Floris, University of Turin, Italy
Preface

Patrick Flynn, TU Dublin, Ireland
Thomas Fuhrmann, OTH Regensburg, Germany
Mohammed Sani Galadima, Ahmadu Bello University Zaria, Nigeria
Josep Gallifa, FPCEE Blanquerna, Ramon Llull University, Spain
Jorge García Ivars, AINIA Centro Tecnológico, Spain
Gonzalo García-Ros, Universidad Politécnica de Cartagena, Spain
Suzanne Gatt, University of Malta, Malta
Javier Gil-Quintana, National University of Distance Education (UNED), Spain
Daniela Gil-Salom, Universitat Politècnica de València, Spain
José Luis Godos-Díez, Universidad de León, Spain
Beth L Goldstein, University of Kentucky, USA
Nuria González-Álvarez, Universidad de León, Spain
Mª de Fátima Goulão, Aberta University, Portugal
İşıl Güney, Hacettepe University Turkey, Turkey
Hamin Hamin, Australian National Institute of Management and Commerce, Australia
Shuangmiao Han, Zhejiang University, China
Maruša Hauptman Komotar, Alma Mater Europaea, Slovenia
Paul Held, FAU, Germany
Katrin Herget, University of Aveiro, Portugal
Peter Hockicko, University of Zilina, Slovakia
Hugo Horta, The University of Hong Kong, HK
Marcelo da Silva Honsell, UDESC, Brazil
Sarka Hubackova, University of Hradec Kralove, Czech Republic
Mirjana Ivanovic, University of Novi Sad, Serbia
Juan Carlos Jiménez Muñoz, University of Valencia, Spain
Beatriz Jiménez Parra, Universidad de León, Spain
Srećko Joksimović, University of South Australia, Australia
Jisun Jung, The University of Hong Kong, HK
Md. Saifuddin Khalid, Technical University of Denmark, Kgs. Lyngby, Denmark
Olga Yuryevna Khatsrinova, KNRTU, Russia
Shakeel Ahmed Khoja, IBA Karachi, Pakistan
Aleksandra Klašnja-Miličević, University of Novi Sad, Serbia
Sofya Kopelyan, University of Twente, The Netherlands
Hasso Kukemelk, University of Tartu, Estonia
Aleksandra Kulpa-Puczyńska, Cardinal Stefan Wyszyński University in Warsaw, Poland
Rangith Baby Kuriakose, Central University of Technology, South Africa
Natalia Lajara Camilleri, Universitat Politècnica de València, Spain
Marc Laperrouze, EPFL, Switzerland
André Leblanc, Dalarna University, Serbia
Clotilde Lechuga, University of Malaga, Spain
Ho Keat Leng, Nanyang Technological University, Singapore
Carlos Lerma, Universitat Politècnica de València, Spain
Maria Limniou, University of Liverpool, UK
Elisabet Llauradó, Universitat Rovira i Virgili, Spain
Carmen Llorente Cegudo, University of Sevilla, Spain
Ernesto López-Gómez, UNED, Spain
Guadalupe López-Íñiguez, University of the Arts Helsinki, Finland
Cherie Lucas, University of Technology Sydney, Australia
Nicolaas Luwes, Central University of Technology, South Africa
Elsa María Macías López, Universidad de Las Palmas de Gran Canaria, Spain
Cristina Maciel de Oliveira, Consejo de Formación en Educación, Uruguay
Brenda Mallinson, Rhodes University, South Africa
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Marina Marchisio, University of Turin, Italy
Célio Gonçalo Marques, Polytechnic Institute of Tomar, Portugal
Mónica Martínez Gómez, Universitat Politècnica de València, Spain
Konstantina Martzoukou, Robert Gordon University, UK
David Menendez Alvarez-Hevia, Manchester Metropolitan University, UK
Mohammad I. Merhi, Indiana University South Bend, USA
Marina Milić Babić, University of Zagreb, Croatia
María del Mar Miralles Quirós, University of Extremadura, Spain
Ulisses Miranda Azeiteiro, University of Aveiro, Portugal
Sylvia Mittler, University of Toronto, Canada
Matthew Montebello, University of Malta, Malta
Darlinda Moreira, Universidade Aberta, Portugal
Michelle Morgan, Expert in pedagogy, UK
Estefanía Mourelle, Universidade da Coruña, Spain
Heba Moustafa Mohamed, Cairo University, Egypt
Ana Isabel Muñoz Alcón, Catholic University of Ávila, Spain
Mihaela Muresan, Dimitrie Cantemir Christian University, Romania
Kylie Murphy, Charles Sturt University, Australia
Fabio Nascimbeni, Universidad Internacional de la Rioja, Spain
Clare Newstead, Nottingham Trent University, United Kingdom
Ricky Ngandu, Walter Sisulu University, South Africa
Raquel Niclòs Corts, University of Valencia, Spain
Rosella Nicolini, Universitat Autonoma de Barcelona, Spain
Michael Niemetz, OTH Regensburg, Germany
Stavros A. Nikou, University of Strathclyde, United Kingdom
Preface

Sarah Nisly, Wingate University, USA
Luis Nobre Pereira, University of Algarve, Portugal
Omid Noroozi, Wageningen University, The Netherlands
Maria Isabel Nuñez-Peña, University of Barcelona, Spain
Cesar Ortega-Sanchez, Curtin University, Australia
Kateryna Osadcha, Bogdan Khmelnitsky Melitopol State Pedagogical University, Ukraine
Viacheslav Osadchy, Bogdan Khmelnitsky Melitopol State Pedagogical University, Ukraine
Juliet E. Ospina-Delgado, Pontificia Universidad Javeriana Cali, Colombia
Miriam Ossevoort, University of Groningen, The Netherlands
Antonio Pantoja, University of Jaén, Spain
Cristina Pardo-Ballester, Iowa State University, USA
Cristina Pardo-García, Universitat de València, Spain
Afroza Parvin, Khulna University, Bangladesh
Elena Paunova-Hubenova, Bulgarian Academy of Science, Bulgaria
Dieter Pawelczak, University of Bundeswehr Munich, Germany
Luís Pedro, University of Aveiro, Portugal
Cleber Augusto Pereira, Federal University of Maranhão, Brazil
Maria Rosario Perello-Marín, Universitat Politècnica de València, Spain
Anja Pfennig, HTW Berlin, Germany
Robert A Phillips, University of Manchester, UK
Pablo Pinazo-Dallenbach, Universidad Internacional de Valencia, Spain
Soner Polat, Kocaeli University, Turkey
Yurgos Politis, Independent Researcher, Ireland
Jenny Pomino, Carl Duisberg Centren Cologne, Germany
Luis Porcuna, Universitat Politècnica de València, Spain
Rubén Porcuna, Universitat de València, Spain
Dimitri Prandner, Johannes Kepler University, Austria
Sarah Prestridge, Griffith University, Australia
Sergio Rabellino, University of Turin, Italy
Martin Ramirez-Urquidy, Universidad Autónoma de Baja California, Mexico
Timothy Read, Universidad Nacional de Educación a Distancia (UNED), Spain
Genaro Rebolledo-Mendez, Tec de Monterrey, Mexico
Arantzazu Rodríguez Fernández, University of The Basque Country, Spain
José Rafael Rojano-Cáceres, Universidad Veracruzana, Mexico
Carlos Romá-Mateo, University of Valencia, Spain
Gorka Roman Etxebarrieta, University of the Basque Country, Spain
Charly Ryan, The University of Winchester, UK
Prathyusha Sanagavarapu, Western Sydney University, Australia
Susanna Sancassani, Politecnico di Milano, Italy
Juan Francisco Sánchez Pérez, Universidad Politécnica de Cartagena, Spain
Pablo Sancho Gil, Generalitat Valenciana, Spain
Dario Sansone, Vanderbilt University, USA
Larissa Sbitneva, Universidad Autónoma del Estado de Morelos, Mexico
Kristina Schulz, University of Applied Sciences and Arts Coburg, Germany
Yvonne Sedelmaier, Coburg University of Applied Sciences, Germany
Elies Seguí-Mas, Universitat Politècnica de València, Spain
Henrik Køhler Simonsen, Copenhagen Business School, Denmark
Álvaro Suárez Sarmiento, ULPGC, Spain
Fátima Suleman, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal
Odette Swart, Unisa, South Africa
Ying Tang, Indiana University Bloomington, USA
Andreia Teles Vieira, Universidade NOVA de Lisboa, Portugal
Iman Tohidian, Allameh Tabataba’i University, Iran
Łukasz Tomczyk, Pedagogical University of Cracow, Poland
José Torrecilla, Universidad Complutense de Madrid, Spain
Paloma Úbeda, Universidad Politécnica de Madrid, Spain
Jani Ursin, University of Jyväskylä, Finland
Merel Van Goch, Utrecht University, The Netherlands
Leanri Van Heerden, Central University of Technology, Free State, South Africa
Marta Varo-Martínez, Universidad de Córdoba, Spain
Rosa M. Vasconcelos, Universidade do Minho, Portugal
Jesus Vazquez Abad, Université de Montréal, Canada
Ana Isabel Veloso, University of Aveiro - DigiMedia, Portugal
Ilaria Venturini, Sapienza Università di Roma, Italy
Henrique Vicente, University of Évora, Portugal
Camilo Vieira, Universidad del Norte, Colombia
Ruth Vilá Baños, University of Barcelona, Spain
María Cinta Vincent Vela, Universitat Politècnica de València, Spain
Maarit Virolainen, University of Jyväskylä, Finland
Nur Bahiyah Abdul Wahab, Teacher Education Institute of Temenggong Ibrahim, Malaysia
Denise Whitelock, Open University, UK
Veit Wohlgemuth, HTW Berlin, Germany
Martin Wolf, University of Applied Sciences Aachen, Germany
Denise Wood, Charles Sturt University, Australia
Jorge Agustín Zapatero Ayuso, Universidad Complutense de Madrid, Spain
Katerina Zdravkova, University Ss. Cyril and Methodius, N. Macedonia
Roza Zhussupova, Eurasian National University, Russia
Ana Zorio-Grima, Universitat de València, Spain
External reviewers

Anita Vazquez Batisti
Alba Manresa Matas
Alina Romanovska
Angela Wright
Birgit Rösel
Carlos Rosa
César García Aranda
Dana Vackova
Domenico Vito
Eric Lee
Fernanda Marcondes
Francisco Castañeda
Humberto Oraison
Ieva Gintere
Ignacio Bretos
Ilse Hagerer
Jessica Sandland
Jesús Sergio Artal-Sevil

Johannes Lang
Lorena Mathien
Manuela Heinz
Mario Pezzino
Mark Davison
Mikhail Vinichenko
Nadia Simoes
Neil Hart
Olga Ovtšarenko
Paulo Oliveira
Perry Share
Rianne van Lambalgen
Rola Zaki
Shi-Chung Chang
Stuart Marlin
Tanja Glusac
Timothy Asiedu
Yuliang Liu
Index

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Impact of Government Policy on Higher Education International Student Recruiters</td>
<td>1</td>
</tr>
<tr>
<td>Lessons learnt – The role of peer-to-peer lecture films in a first year material science laboratory course</td>
<td>9</td>
</tr>
<tr>
<td>A Comparison of students’ attitudes and attainment on an enterprise module for scientists and engineers</td>
<td>17</td>
</tr>
<tr>
<td>Escape room in education: a bibliometric study</td>
<td>25</td>
</tr>
<tr>
<td>Staff Experiences of Victoria University’s First Year College During the Implementation of Block Mode Teaching</td>
<td>45</td>
</tr>
<tr>
<td>Conceptual Framework for Assessing Process Variables Salient for Service-Learning Experience</td>
<td>53</td>
</tr>
<tr>
<td>International attractiveness of undergraduate and postgraduate studies: is scientific production a determining factor?</td>
<td>63</td>
</tr>
<tr>
<td>The use of EduBlog in initial teachers training: an experience of a teaching innovation project</td>
<td>75</td>
</tr>
<tr>
<td>Practicing 21st Century Skills in the Classroom</td>
<td>85</td>
</tr>
<tr>
<td>Planned Chaos in Electrical Engineering Education</td>
<td>95</td>
</tr>
<tr>
<td>Flipped teaching and interactive tools. A multidisciplinary innovation experience in higher education</td>
<td>103</td>
</tr>
</tbody>
</table>
Effectiveness of delivery methods in the transfer of soft skills ... 113
Social entrepreneurship as a tool for promoting critical, paradoxical learning in the field of business organization and management ... 123
Shared learning between health sciences university students. Teaching-learning process of hand hygiene .. 131
Disruptive Pedagogy: Guerrilla Tactics in Large Classes .. 139
Student participation and peer-to-peer learning processes in primary education 147
Student Understanding of Number Line Graphs .. 155
Enhancing the practice of feedback through arts: an integrated open strategy 165
Adoption of evidenced-based teaching strategies in STEM and non-STEM courses after a common faculty development experience ... 173
Interactive Classroom Methods for Science classes ... 183
Breaking down the classroom walls: how to train future media professionals in an interdisciplinary and applied way while fostering social change .. 193
A Case Study of Internationalization in Chinese Non-government Institutions 201
Interaction in spoken academic discourse in an EMI context: the use of questions 211
Developing Effective Instructional Skills: The Master Educator Program at SUNY Buffalo State ... 221
Preliminary study on the awareness of the SDGs in future primary school teachers 229
Information skills and library knowledge for higher education teachers 237
Employability skills of graduates: Insights from job advertisements 247
Baltic - Nordic Universities in the EU Research and Innovation Programme Horizon 2020 ... 255
Effective integration of computational tools into Chemical Engineering studies at an international level .. 265
The Digital Learning Laboratory Model to Catalyze Change in University Teaching and Learning ... 275
Improving international student transition to professional employment 283
Transforming YouTube into a valid source of knowledge for Anatomy students 293
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Times Square to Eyre Square: Hackathons as Authentic Learning</td>
<td>301</td>
</tr>
<tr>
<td>for Information Systems Students</td>
<td></td>
</tr>
<tr>
<td>The development of soft skills among students during a business</td>
<td>309</td>
</tr>
<tr>
<td>game</td>
<td></td>
</tr>
<tr>
<td>“Post-it mapping”: analogical disruption in the classroom</td>
<td>317</td>
</tr>
<tr>
<td>Using Virtual Reality to promote pre-service teachers’ classroom</td>
<td>325</td>
</tr>
<tr>
<td>management skills and teacher resilience: A qualitative evaluation</td>
<td></td>
</tr>
<tr>
<td>Occupational safety and health education and training: an innovative</td>
<td>333</td>
</tr>
<tr>
<td>format and experience</td>
<td></td>
</tr>
<tr>
<td>Students' experiences with learning mergers and acquisition skills</td>
<td>343</td>
</tr>
<tr>
<td>in a multidisciplinary learning community</td>
<td></td>
</tr>
<tr>
<td>Integrating STEMM in Higher Education: a proposed curriculum</td>
<td>353</td>
</tr>
<tr>
<td>development framework</td>
<td></td>
</tr>
<tr>
<td>Learning Outside the Classroom: A Distinctive Approach to Co-Curricular</td>
<td>361</td>
</tr>
<tr>
<td>Recognition in the Australian context</td>
<td></td>
</tr>
<tr>
<td>Transnational Higher Education and International Branch Campuses in</td>
<td>371</td>
</tr>
<tr>
<td>the Gulf Cooperation Council Countries: The Case of the United Arab</td>
<td></td>
</tr>
<tr>
<td>Emirates</td>
<td></td>
</tr>
<tr>
<td>An Approach to Building Learning Objects</td>
<td>383</td>
</tr>
<tr>
<td>The Skills of University Students in Educational Settings Assessed</td>
<td>391</td>
</tr>
<tr>
<td>by Company Tutors: A Longitudinal Study in Italy</td>
<td></td>
</tr>
<tr>
<td>Educational System Assessment: Italy And Finland, Comparative Case</td>
<td>399</td>
</tr>
<tr>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>Effects of course coordination and part-time precalculus instructor</td>
<td>407</td>
</tr>
<tr>
<td>support on student academic performance</td>
<td></td>
</tr>
<tr>
<td>MOCCA College: An assessment of inferential narrative and expository</td>
<td>417</td>
</tr>
<tr>
<td>comprehension</td>
<td></td>
</tr>
<tr>
<td>Functional and conservation value of fruits - a lab approach</td>
<td>427</td>
</tr>
<tr>
<td>Blended Support of Undergraduate Interdisciplinary Research</td>
<td>437</td>
</tr>
<tr>
<td>Transdisciplinary teaching and learning: an experiment</td>
<td>447</td>
</tr>
<tr>
<td>Design for Cultural Heritage at the University of Ferrara</td>
<td>455</td>
</tr>
<tr>
<td>Improving vocational interest assessments: data complexity levels</td>
<td>465</td>
</tr>
<tr>
<td>are important for social and enterprising areas</td>
<td></td>
</tr>
<tr>
<td>Exploring student teachers’ reflection skills: Evidence from journal</td>
<td>475</td>
</tr>
<tr>
<td>tasks</td>
<td></td>
</tr>
</tbody>
</table>
A decade of TeachMeet: an Interpretive Phenomenological Analysis of participants’ tales of impact ... 483
Internal branding at university: Do tenure and job security matter? 493
“Because, as a teacher, giving feedback and assessment is actually really difficult”: using self- and peer-assessment to develop Higher Education teachers’ skills in assessment and feedback ... 501
Virtual Technologies possibilities for improving background knowledge of Civil Engineering Education .. 509
Classroom Learning Motivators: Breaking ESL Chinese university students’ passivity in class discussion .. 519
A Systematic Assessment Framework for Higher-Education Institutions 527
Augmented reality to aid retention in an African university of technology engineering program ... 535
Education technology based on a 3D model of house VirTec ... 545
Methodology based on collaborative problem solving implemented in a high academic achievement group ... 555
Challenging students to develop work-based skills: A PBL experience 561
Supporting deep understanding with emerging technologies in a STEM university math class ... 569
Scientific Discourse: Can Our First-Year Students Express Themselves in Science? 579
A concept of a mainly digitalized course on control theory including problem-based practical units and digital supported exams ... 587
Teaching Security in Introductory C-Programming Courses .. 595
The power of peer-review: A tool to improve student skills and unit satisfaction 605
Higher Education and Solidarity? The Integration of Refugee Students at Austrian Universities .. 617
An Investigation of the Role Programming Support Services Have for Mature Students ... 625
Good-bye email, welcome Slack .. 635
Evaluation and Accreditation System of External Internship Tutors - SEATPE 643
Class Discussion and Class Participation: Determination of Their Relationship 651
The Value of an Enterprise Postgraduate Research Programme for creating business start-ups in the UK... 659
Relationships Between External Factors and University Students' Attitudes towards Academic Research .. 669
Creativity and Innovation Skills in University STEM Education: The CHET Project Approach ... 679
Combined Use of Problem Based Learning and Flipped Learning in Turbomachinery ... 689
U-Behavior: Visual-Form Learning Analytics to Enhance Teaching and Learning 697
Correlation between students' workload and attendance as related towards final grades: A case of study on Statistics for first-year Engineering students. 707
Project-based learning: A practical approach to implementing Memsource in the classroom.. 717
Stakeholder Management: Formulating a Primer for Practitioners 725
Challenges in Higher Education Teaching Collaborations – a CAGE distance framework analysis .. 735
Design of a gamified tool for the development of citizenship competencies 743
On the Use of Bayesian Probabilistic Matrix Factorization for Predicting Student Performance in Online Learning Environments 751
Preventing university dropout: the relation between the student vulnerability features and academic performance in the first year .. 761
Sustainable Practices in research-integrated Education in HE: towards an accepted Development Pedagogy .. 771
Beyond Degree Programs: How a Major University Immersed Itself in the Educational Landscape of New York City .. 777
Did the Bologna Process contribute to improving international students’ success rates in Germany’s HEIs? Twenty years of success rates in Germany: how the Bologna Process impacts on the success rates of International and German students 785
Entrepreneurship and University Spin-offs for (Academic) Employment? 793
Breaking down Silos through Authentic Assessment: a Live Case Analysis 801
Practice tests improve performance, increase engagement and protect from psychological distress ... 811
The bad and the ugly: a systematic review of technology’s negative impacts’ mentions in literature from 2005 to 2020 ... 819
Service-learning by PhD students to aid socially neglected people.............................. 831
Drugs, Achievements and Educational Systems: Predictive Models for Society and Education through Speculative Data... 839
Marking Schemes for an Authentic Group Project, Trial by Statistics - A Case Study 847
Alternative Strategies for Higher Education Provision at TAFE Queensland 857
A score methodology to assess concept maps in medical education in the context of pathophysiology teaching... 867
hybrid Design based research for Agile Software development (hDAS) in ISD contexts: a discovery from studying how to design MUVEs for VET. 875
Bridging the gap between academic and policy-oriented activities in higher education institutions... 883
The Validation of a Quantitative Measure of Self-authorship among Chinese University Students .. 893
A Student Workload Estimator Tool: Rethinking Modular Credit................................. 903
Coercive isomorphism in higher education: Direct pressures from the state to the Turkish universities ... 911
Factors That Shape University Students’ Attitudes Towards Academic Research........ 919
Student Engagement in Co-designing and Co-teaching Cornerstone Course of EECS Design and Implementation at National Taiwan University 929
The world of fractals ... 939
Critical Thinking and Culturally-Sustaining Teaching: Developing the Historical Literacy of M?ori and Pasifika Undergraduates in Aotearoa/New Zealand 949
Creating a project-based degree at a new university in Africa 959
The digitalization of universities from a students’ perspective.. 967
Contributing factors to academic achievements: from community college to university in Hong Kong ... 975
Becoming an Expert, Ambassador or Doing Project Work: Three Paths to Excellence for Students at Artevelde University of Applied Sciences 985
Employability Through Experiential Delivery of Intercultural Communication Skills
Online .. 993

The Lecture-Performance: Implementing Performative Pedagogy in Literature Class ... 1001

Addressing engineering threshold concepts in an African university of technology 1009

Curriculum development in South Africa: the role of professional bodies 1017

Projects with added value to increase competitiveness and student satisfaction. Case study: The renewal of the BA in Advertising and Public Relations. University of Girona ... 1027

Information overload and lecturer mistakes during engineering course organization 1037

Experiential and Integrated Learning Environments – Teaching Urban Design Studio at Curtin University ... 1045

Design of three-dimensional cartographical didactic materials for Physical Geography teaching .. 1055

Veterinary students’ perceptions of participation in a service-learning activity 1065

CLab Torino: a transdisciplinary environment to provide a challenge-based teaching model ... 1073

On strategies to improve student engagement ... 1085

Helping tomorrow’s social professionals to learn about social robotics 1093

ICT and Accounting Education. An innovative teaching method: the Practice Enterprise .. 1101

European Joint Doctorates: myth or reality? ... 1109

Future competencies for digitally aligned specialties: coping intelligently with global challenges ... 1119

Do text discussions improve the academic skills of students of HE? Andorra University case. .. 1127

Design and Evaluation of Gamification Experiences in Computer Science Studies 1137

Don’t feedback in anger: enhancing student experience of feedback 1147

Applying Test-driven Development in Evaluating Student Projects 1155

A pedagogic approach by contextual immersion ... 1165

Motivations and concerns of outgoing Erasmus students ... 1173
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socrative in the Language Classroom: Tackling Classroom Anxiety and Encouraging Participation</td>
<td>1181</td>
</tr>
<tr>
<td>The role of internationalisation in students’ cultural literacy and intercultural communication</td>
<td>1191</td>
</tr>
<tr>
<td>Advancing understandings on Students’ Mobility as a Tool to reach 2030 Agenda</td>
<td>1201</td>
</tr>
<tr>
<td>Reforming Higher Education in India: In Pursuit of Excellence</td>
<td>1209</td>
</tr>
<tr>
<td>Gamification in Online Educational Systems</td>
<td>1217</td>
</tr>
<tr>
<td>Faculty management after higher education reforms – exploring the organizational structure of faculties considering their context factors</td>
<td>1225</td>
</tr>
<tr>
<td>The faculty development model of University of Milan-Bicocca: towards an integration of general and disciplinary didactics</td>
<td>1235</td>
</tr>
<tr>
<td>Integrated disciplines and future competencies: A blueprint for ethically aligned curriculum for IT, CS, ITC & beyond</td>
<td>1245</td>
</tr>
<tr>
<td>International Collaboration on a Sustainable Forestry Management OER Online Program – A Case Study</td>
<td>1253</td>
</tr>
<tr>
<td>Enhancing students’ preparation for the professional field: A quasi-experimental study on a new community service learning module for first year pedagogical sciences students</td>
<td>1269</td>
</tr>
<tr>
<td>How to support mobility students to gain soft-competences: Knowledge, Skills and Attitudes</td>
<td>1279</td>
</tr>
<tr>
<td>“I really don’t know what you mean by critical pedagogy.” Reflections made by in-service teachers in the USA</td>
<td>1289</td>
</tr>
<tr>
<td>(Natural) Science and Technique in Medicine: Teaching Competences along with Research Activities</td>
<td>1297</td>
</tr>
<tr>
<td>Exploring the use of Plickers for conducting assessments in higher education</td>
<td>1305</td>
</tr>
<tr>
<td>Using Real Data in a quantitative methods course to enhance teachers’ and school leaders’ statistical literacy</td>
<td>1313</td>
</tr>
<tr>
<td>Development of an Academic Risk Model to support Higher Education Quality Assurance</td>
<td>1323</td>
</tr>
</tbody>
</table>
Index

Dropout and Engineering undergraduate programs at the Universidad Nacional de Colombia between 2012-2019 ... 1331

Chart for Flexible Curriculum in terms of Time and Similarity 1339

A transversal methodology for the implementation of virtual reality in Architecture learning ... 1347

Perceptions of organizational injustice in French business schools 1355

Impact of GUI personalization of a word processor on a learning activity course 1365

How to Motivate Students in Large-enrollment Courses for Active-learning 1373

Public Health Observatories: a learning community model to foster knowledge transfer for sustainable cities .. 1383

Critical Thinking on Technology Use: Higher Education Course Design to Promote Personal, Professional and Societal Change 1391

Reliability of multiple-choice versus problem-solving student exam scores in higher education: Empirical tests ... 1399

Self-Contained Jupyter Notebook Labs Promote Scalable Signal Processing Education ... 1409

Travel as pedagogy: embodied learning in short-term study abroad 1417

Peer actions for a service learning project to prevent drug-facilitated sexual assaults 1425

Innovation^2: Innovative Course on Innovation Takes On the Lebanese Revolution 1435

The Challenge of Research Supervision: The Experience of Lecturers in Various Academic Disciplines ... 1445

Building a Student Success Model at GMIT: student centred learning opportunities, employability and the professional development of teaching 1453
Integrating STEMM in Higher Education: a proposed curriculum development framework

Lindsey Conner
College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia.

Abstract

Educational systems around the world are trying to grapple with the need for experts in science, technology, engineering, mathematics and medicine (STEMM), who have expert knowledge and can work in collaborative teams to find solutions to local and global issues, including the current pandemic related to the Covid-19 outbreak. Employers seek disciplinary experts as well as people who can act as connectors for groups and ideas and who share and communicate them effectively. Integration of the STEMM disciplines within teaching programmes is in its infancy in higher education, but there is recognition for providing extraordinary experiences for learning that develop collaboration and synthesis of divergent ways of thinking, including crossing disciplinary boundaries. A framework is presented for supporting the design of integrated STEMM course work in higher education. It includes authentic, student-centered, evidence-based, inquiry, problem-based learning through situated, immersive and experiential approaches that can support the deliberate development of skills for integrating thinking, problem-solving and for creating humanistic solutions for local and global issues. This framework can be used as a guide for designing new teaching programs that use transdisciplinary approaches for STEMM in higher education. Refinements of the framework can be generated through rigorously evaluating implementation in specific contexts.

Keywords: Covid-19, STEMM, transdisciplinary teaching, higher education, employment.
1. Introduction

Working in interdisciplinary teams already occurs in research in higher education, research institutes and government agencies. However, there are only glimpses of this occurring in teaching programmes or course work in higher education, especially where there is a deliberate focus on inter-disciplinary learning. Integrated approaches in higher education can build on inquiry models and problem-based learning developments in the compulsory education sector (e.g. Corrigan et al., 2015; Sniedze-Gregory, 2018). This paper advocates for a STEMM approach for learning programs in higher education to expand on previous advocacy for integrating STEM (e.g. Malcolm & Feder, 2016).

The importance of science, technology, engineering, mathematics and medicine (STEMM) knowledge and skills could not be more important globally than now. In the current Covid-19 situation, STEMM approaches are required using global collaboration for supporting health systems, decisions about personal health, sustaining creating technological and engineering solutions and understanding how science can contribute to solve problems and enhance life experiences. Integrating STEMM knowledge and skills relies heavily on collaboration, evaluation of knowledge and self-reflection for learning (Conner, 2014). Such knowledge and skills have been highlighted as essential for the future workforce with an estimated 75% of jobs requiring problem-solving, inquiry, critical and creative thinking (World Economic Forum, 2019). These skills have also been identified as being crucial to ensure economic strength, global competitiveness, national security and guardianship of the environment.

While the separate disciplines have served higher education for considerable time, interdisciplinarity is becoming more recognized as providing promising advances to address complex issues such as climate change (Bammer, 2017; Shaman et al., 2013) and to create novel solutions for health. In the current Covid-19 situation, decisions about restricting social interactions at multiple levels must be based on what we know about virus replication, rates of infection, immunity responses, personal hygiene practices, using statistics to convey data, using bioengineering to create vaccines and treatments, using engineering to create or repurpose factories for making products they were not previously designed to make (masks, hand sanitizer, ventilators) and more. Future ways of working will require more localized adapted solutions that leverage off what has been learned globally.

This means that interdisciplinary learning experiences will be more important than ever before, so that students can be immersed in learning experiences that support them to develop critical and creative thinking as well as collaborative and communication skills. Delanty (2001) goes even further and advocates for universities to reappraise what they focus on in terms of developing a new type of citizenship that is responsive to the changing nature of knowledge production and promotes ‘the self-transformation of cultures through a critical
self-engagement with each other’ (p. 128) in other words, collaboration and co-operation. Universities can provide learning experiences that support the development of technocratic skills (those that serve society through professions or service) and develop cultural capital (citizens who can take socially responsible action to improve society) (Delanty, 2001). The opportunities for how STEMM can contribute to this agenda, are only limited by our imaginations. If students need STEMM knowledge and skills, and employers are demanding them, how quickly are education systems adjusting to this need? Instead of piecemeal reform, this paper advocates for an integrated approach and provides a framework for helping to develop this reform.

2. Previous research on integration of STEMM in undergraduate programs

The Association of American Universities reported on its’ work to support the implementation of better teaching and learning in undergraduate programs (Association of American Universities, 2012). This report provides many specific examples of how curriculum is being integrated within STEMM. Further research, as reported by the National Academy of Science, Engineering and Medicine (2018) indicated that there are some promising results of integrating curriculum. These included:

1. Some integrative approaches in STEMM have led to positive learning outcomes e.g. increased critical thinking abilities, higher-order thinking, reasoning and analysis, problem solving, communication, and teamwork.
2. Integrating STEMM content and pedagogies into arts and humanities may improve inter-disciplinary relations, improve scientific and technological literacy, and data analysis used in humanistic inquiry.
3. Where medical students experienced arts and humanities within their program, they increased their communication skills, empathy, resilience, teamwork and, increased their tolerance for uncertainty.
4. Around the world there is an increase in the number of educational institutions that are integrating curriculum.

Research on the integration of mathematics into other disciplines (or data sciences more generally) indicates huge potential promise (Czerniak, 2007). While science and mathematics share common aspects for problem-solving, teaching programs that truly integrate science and mathematics in higher education is rare (Bush & Cook, 2019). It is more likely that combining the approaches to learning, such as design thinking from engineering with problem-based and inquiry-based learning from the sciences and mathematics and including case studies and simulations from medicine, are worth pursuing in real-world contexts.

It seems that there is more likelihood of coherence, depth and motivation when design-based approaches are combined with problem-solving approaches (Miller & Krajcik, 2019).
Therefore it is not just the knowledge from separate disciplines that can be drawn on in an integrated approach, but the approaches to learning used in different disciplines, can be integrated as well to provide knowledge in and for action.

3. Proposed interdisciplinary STEMM curriculum model

The framework in Figure 1 is proposed to support the development of teaching and learning through interdisciplinarity in STEMM contexts. In Figure 1, the Prior knowledge dimension implies that faculty and students are aware that students already possess knowledge (both declarative knowledge and knowledge of skills) or know how to find out. This necessitates using teaching methods and creating support materials to help students reveal their emerging understanding. The use of analytic and intuitive thinking can also help manage their learning progressions.

Student support includes providing resources, learning technologies and access to data for continuous improvement. Supporting students to establish clear goals for learning means that students are more likely to invest effort and manage their time effectively, have a positive mindset about their choices and futures, appreciate differences and are committed to serving their communities (Schreiner et al. 2012).

Key pedagogies will be those that actively engage students e.g. design-thinking, problem-based or project-based and inquiry approaches to learning that use scenarios and multiple real-world examples or simulations. The importance of problem-based and inquiry approaches is that they enable specific examples to be investigated. When well-supported, these approaches to learning also assist in the development of students’ academic judgement in relation to what knowledge is needed and how to undertake their learning (Conner, 2014). Students need to experience opportunities to critique their understanding and to create, curate and communicate, especially new knowledge they create as part of their collaborations.

Some students may have come through more contemporary learning environments where they have experienced inquiry and cross-disciplinary approaches at senior schools (e.g. see ASMS, Ao Tawhiti Unlimited Discovery). However students may need to be enculturated into new ways of thinking about and managing their own learning especially those who expect to be taught through more traditional teaching and learning approaches.

Through providing Authentic contexts for learning, students will gain a range of domain knowledge through using a range of primary and secondary data sources. The knowledge needed will be appropriate to the learning context. Their learning will be situated in projects or solution-focused experiences that value collaboration /teamwork. Therefore the Learning environments can be described as immersive and experiential where contributions are made to real solutions. Faculty roles may need to shift from being the knower to being the enabler.
The knowledge needed by students will need to be reconsidered as to what is appropriate. This may be threatening for some faculty whose identity is bound with expertise knowledge that may no longer be relevant to real-world situations. Students are also encouraged to consider interactions of components, using data sciences and cause and effect analyses, so crucial to tinkering through iterations for the best possible solutions, while taking account of influences and unintended outcomes.

The challenge with assessment when using integrated approaches, is related to what is designated as important for students to learn. Changes to curriculum can be driven by changes to assessment. Good learning designers start with the end in mind and identify what learning experiences will enable students to demonstrate the desired outcomes. If creative and critical thinking, collaboration and communication skills are desired, then these should be assessed alongside the tangible solutions as being feasible or achievable. Assessments could evaluate: How did students connect disparate sources of knowledge or use a range of skills to solve a problem? Have students taken humanistic or contingent factors into account?

4. Limitations of the integrating STEMM

While integrating disciplines has been implemented in some schooling systems for some time (Sniedze-Gregory, 2018), with some exceptions, higher education has been somewhat reticent about taking up more integrated approaches in STEMM. The reasons given for not integrating curriculum relate to: deeply held views by faculty about the value of separate disciplines; the specialist language and technical issues that may be discipline-specific; the availability of resources for teaching using appropriate pedagogies; faculty backgrounds (especially related to how they were taught or learning within their discipline) and an unwillingness to change; time to conceptualize an integrated approach to teaching and learning; and the need to stay productively researching (Malcolm & Feder, 2016).

Students also come to higher education with expectations about what and how they will be taught, often based on reputations and traditions. Institutional strategies for improved instruction and co-curricular support have yielded improvements in students’ outcomes. It seems that assessment, course sequences, learning environments, student support and students’ self-efficacy, all affect student engagement and progression (Malcolm & Feder, 2016). With the current accelerated shift to teaching in higher education to online environments, considerations of what interaction involves (students with resources, students with faculty and students-students) is of high interest. Students do not necessarily have the requisite self-directed or self-regulating skills sufficient to support their progress (Conner, 2014).
5. Conclusion and Recommendations

This paper is proposing a model to support the development of inter-disciplinarity in STEMM course work in higher education. If designed well, such interdisciplinary approaches can build capability and capacity amongst graduates to solve local and global issues through enacting their knowledge and skills collaboratively. Students will need to be provided with learning experiences for developing skills in design-thinking, problem-solving and interdisciplinary inquiry. They can also benefit from collaborating as emerging, enquiring experts who are ever curious about alternative possibilities and who effectively communicate their new knowledge and potential solutions. This can be a way (as well as research) for universities to generate new knowledge.

Currently most universities around the world are not addressing the need to develop interdisciplinary approaches seriously. Instead there are fragmented interdisciplinary approaches rather than seeking approaches that include iterative changes, reflection, evaluation, synthesis collaboration and authentic assessment. The model proposed in Figure 1 can support this development and the author welcomes feedback on it.

The implications of the proposed framework (Figure 1) is that there may need to be cultural changes for faculty and students to learn within student-centered, active learning pedagogical approaches that use relevant or authentic assessments. There will need to be a shift from delivering factoids to designing rich learning experiences using real-world challenges that require connecting ideas and conceptual mastery as well as developing the skills of collaboration, critical and creative thinking and effective communication. This shift implies that institutions will support staff to rethink how they provide learning experiences, rather than what content they teach. Staff development should be systematic and iterative, where reflection on progress towards effective active learning occurs and is celebrated and rewarded through promotion systems.

Global challenges such as climate change and pandemics, call for working across disciplines that transcend disciplinary silos (Honeybun-Arnolda & Obermeister, 2019). The integration of disciplines can support development and innovation for a more systems-based generative approach to learning in higher education for a more humanistic future. Further research is warranted to investigate how integration of curriculum through a range of pedagogical approaches within STEMM can prepare students for dealing with complex situations that call for evidence-based and humanistic solutions as they negotiate their worlds as workers and citizens.
References

Bammer, G. (2017). Should we discipline interdisciplinarity? *Palgrave Communications*, 3 (30) DOI: 10.1057/s41599-017-0039-7

