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Abstract

This paper explores the use of a simple linear performance model, that determines execution time based instruc-
tion and cache miss counts, for describing the behaviour of two-electron integral evaluation algorithm in the Gaussian
computational chemistry package. Four different microarchitecture platforms are considered with a total of seven in-
dividual microprocessors. Both Hartree-Fock and hybrid Hartree-Fock/Density Functional Theory electronic structure
methods are assessed.

In most cases the model is found to be accurate to within 3%. Least agreement is for an Athlon64 system (ranging
from 1.8% to 6.5%) and a periodic boundary computation on an Opteron where errors of up to 6.8% are observed.
These errors arise as the model does not account for the intricacies of out-of-order execution, on-chip write-back
buffers and prefetch techniques that modern microprocessors implement.

The parameters from the linear performance model are combined with instruction and cache miss counts obtained
from functional cache simulation to predict the effect of cache modification on total execution time. Variations in level
1 and 2 linesize and level 2 total size are considered, we find there is some benefit if linesizes are increased (L1: 8%,
L2: 4%). Increasing the level 2 cache size is also predicted to be beneficial, although the cache blocking approach
already implemented in the Gaussian integral evaluation code was found to be working well.

Keywords: Performance model, Gaussian, LPM, hardware performance counters, cache simulation, PRISM, ERI,
HF, B3LYP

1. Introduction

Effective performance models of fundamental algorithms, which constitute computational science applications,
allow a computational scientist and/or developer to reason about the intrinsic costs associated with the data structures
and algorithms being used [1, 2]. Models that can be used to understand memory performance are particularly
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important. This is because all modern microprocessors utilize complex cache memory hierarchies, and the efficient
use of this hierarchy can have a huge effect on overall performance. Consider for example the effort that has been
devoted towards the design of algorithms that carefully orchestrate computation in synchrony with data movement
[3, 4, 5].

In this paper we demonstrate the use of a simple linear performance model (LPM) to describe the runtime perfor-
mance of an algorithm that is fundamental to electronic structure theory, namely of the PRISM algorithm for com-
puting two-electron repulsion integrals (ERI) [6, 7], as implemented in the widely used Gaussian G03 computational
chemistry package [8]. We build on previous work [9, 10], where preliminary results using the LPM to model the
performance of PRISM for Hartree-Fock (HF) calculations on x86 microprocessors were presented, to consider both
HF and hybrid HF/density functional theory (DFT) methods and a total of seven different processors. We also show
how the LPM can be combined with functional cache simulation to predict the effect of system hardware changes on
algorthmic runtime performance.

The paper is organized into eight sections. Section 2 discusses background material pertaining to the LPM, the HF
and DFT methods, and the PRISM ERI algorithm. Section 3 details the experimental methodology used, including
the microprocessors, the hardware performance counters, the functional cache simulator, the data analysis performed
and molecular the systems used. In Section 4 we demonstrate the effect of cache blocking on the performance of
the PRISM ERI algorithm on one microprocessor and how this data can be used to parametrize the LPM. Section
5 considers the accuracy of the LPM for the seven microprocessors and a range of computation types. The use
of functional cache simulation and how it may be combined with the LPM to predict performance as a function
of architectural changes is presented in Section 6. Finally Sections 7 and 8 present related work and conclusions
respectively.

2. Background

The Linear Performance Model (LPM)
The LPM [11] defines application performance as a simple linear combination of instructions issued and cache

misses,
Cycles = α∗ (ICount)+β∗ (L1Misses)+ γ∗ (L2Misses) (1)

where ICount is the instruction count, L1Misses the total number of Level 1 cache misses, L2Misses the total number of
Level 2 cache misses, and α,β and γ are penalty factors. Loosely speaking the value of α reflects the ability of the
code to exploit the underlying super-scalar architecture, β is the average cost of an L1 cache miss, and γ is the average
cost of an L2 cache miss. We term α, β and γ the Processor and Platform specific Coefficients (PPCoeffs). The
LPM differs from other cache performance models in that it ignores the intricacies of program execution and assumes
platform and processor specific factors that influence application performance can be averaged out and captured by the
values of the PPCoeffs. For a candidate algorithm, PPCoeffs can be obtained by running the code on similar processor
family revisions which have different cache sizes or by varying a cache blocking factor within the algorithm. Either
method will yield different instruction, L1 and L2 cache miss counts allowing the PPCoeffs to be obtained using a
least squares fit to the observed cycle time according to Equation 1.

The Hartree Fock (HF) and Density Functional Theory (DFT) Methods
Over the past five decades computational chemists have devised a hierarchy of methods based around evaluating a

self-consistent field (SCF) for the quantum chemical system being studied [12, 13]. This hierarchy affords increasing
chemical accuracy at added computational cost. The HF method, the starting point for many of the more sophisticated
methods, uses molecular orbitals (MO) 2 to compute the total electronic energy of the system. An alternative method
known as DFT uses the electronic density to derive a total system energy. Between these two alternative approaches
there lies a variety of hybrid HF/DFT schemes that compute some interaction terms based on the molecular orbitals
and some based on the electron density. B3LYP [12, 13] is one such hybrid method.

2A MO (φi)is a function which describes the motion of each electron in a system. MOs are often expanded using a finite set of basis functions
i.e. φi = ∑n

α cαiχα, where cαi are the MO coefficients. Both HF and DFT methods optimize coefficients MO coefficients to minimize total electronic
energy.
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In all cases performing a SCF computation involves solving the following matrix equation,

FC = SCε (2)

where F is the so called Fock matrix, C the matrix of MO coefficients we seek to evaluate, S a matrix of integrals
representing the overlap between pairs of basis functions and ε is a vector the elements of which correspond to the
energies of the MOs. The F matrix is defined as,

F(i) = h(i)+
N

∑
j=1

2Jj(i)−Kj(i) (3)

where h(i) is the one-electron Hamiltonian operator, Jj the Coulomb operator and Kj the exchange-correlation (XC)
operator. The latter two operators capture the interactions between and among the N electrons in the system. For
HF and hybrid DFT computations evaluation of Jj and Kj requires the evaluation of two-electron repulsion integrals
(ERIs). In the Gaussian application, these ERIs for HF are evaluated using the PRISM ERI evaluation algorithm3.

The PRISM ERI Algorithm and DFT XC

Gaussian uses an efficient implementation of the PRISM algorithm [6, 7] to compute ERIs. Each ERI involves
four basis functions, where each basis function is a linear combination of one or more Cartesian Gaussian functions
located at the same centre. The latter is referred to as a contracted Gaussian function. For each contracted Gaussian
function all the Cartesian components are treated together, with all ERIs arising from all components of all the four
contracted Gaussian functions being collectively referred to as a shell-quartet. The PRISM algorithm tailors its op-
eration according to the shell-quartet type, that is according to the angular momentum of the constituent contracted
Gaussian functions and how each contracted function is assembled from individual Gaussian functions. Shell quartets
of the same type, but with functions that have different exponents and/or are located at different centres, are computed
in a similar manner and are referred to as an ERI batch.

Treating all ERIs of a given type in one batch is advantageous in that it minimizes the need to recompute common
intermediates. The algorithm can also be vectorized over the batch size, and batch sizes can be large leading to good
vectorisation or good instruction pipelining. On cache based machines large batch sizes can, however, also lead to data
structures that no longer fit in cache. This causes expensive cache misses that degrade performance. As an example of
batch size consider a computation performed on a large water cluster system [14]. Usually all oxygen and hydrogen
atoms in each water molecule will use the same basis set so there will be many ERIs with the same quartet type but
with functions located on different oxygen or hydrogen centers.

Evaluation of the Jj(i) and Kj(i) terms vary between HF and DFT methods. In HF methods both terms are
evaluated with four-center ERIs using PRISM, with the exception that HF methods have exchange integrals but do
not include terms for electron-electron correlated motion. DFT methods, in contrast, evaluate the Coulomb, exchange
and correlation terms separately. In hybrid DFT methods like B3LYP, PRISM is used for the Coulomb terms and
numerical quadrature on a 3D grid is used for the XC terms [12, 13, 15].

When a batch size becomes too large it is better to split the batch into multiple smaller batches and process each
sub-batch separately. Such cache blocking of ERI batches and batching of grid points in DFT numerical quadrature
has been implemented in Gaussian for many years now, with a blocking factor that was derived based largely on
empirical observation. In this work we use modification of the cache blocking factor as a means for creating different
instruction and cache miss counts and execution times. This data is then used to fit the LPM.

3. Experimental Methodology

This section discusses the various hardware and software resources, the functional cache simulator, the molecular
benchmark systems and methodology used.

3For B3LYP, the Kj operator also requires some terms to be evaluated using numerical quadrature.
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Microprocessors and Compilers

Four distinct microprocessor families are used: the AMD64, Intel’s NetBurst, P6 architectures and the IBM
PowerPC. Within these families data for a total of seven distinct microprocessor platforms were obtained. We note
that the microarchitecture for the AMD64, P6 and PowerPC systems are very similar to those found in contemporary
microprocessors. From AMD64 family, we used (a) Opteron AMD848, clocked at 2.2Ghz with 64Kb L1 data-cache
and 1 MB L2 unified-cache and (b) Athlon64 X2 4200+, 2.2Ghz, 64Kb L1 data-cache, 512Kb unified-L2 cache.
From the Intel NetBurst family, we used (a) Pentium 4, 3.0Ghz, 64Kb L1 data-cache and 1 MB unified-L2 cache and
(b) Pentium 4 EM64T, 3.0Ghz, 16Kb L1 data-cache and 2 MB L2 unified-cache. From the Intel P6 family we used
a Pentium M, 1.4Ghz, 32Kb L1 data-cache and 1 MB L2 unified-cache. Lastly from the IBM PowerPC family we
used (a) G5 PPC970Fx, 1.8Ghz, 32Kb L1 data-cache and 512Kb L2 unified-cache and (b) G5-XServe PPC970Fx,
2.0Ghz, 32Kb L1 data-cache and 512Kb L2 unified-cache. On the AMD64 and Intel platforms the PGI Fortran and
C compilers (version 6.1-1) were used, while on the PowerPC IBM’s xlf and xlc compilers (version 10.01) were used.

Hardware Performance Counters

Hardware performance counter values were read by inserting instrumentation code into G03 source code (version
G03D01 [8]) and recompiling . For portability the PAPI cross-platform hardware performance counter infrastructure
(version 3.2.1) was used [16]. All platforms ran a Linux 2.6.11.4 kernel with the SuSE 9.2 distribution and Mikael
Peterson’s perfctrs [17] Linux kernel patch (version 2.6.19).

Functional Cache Simulation

Functional cache simulation was performed using the Callgrind simulator [18] along with the Valgrind [19] dy-
namic binary translation tool. Callgrind’s cache simulation implements a write-allocate cache and has options for
either a write-through or write-back policy for all data caches. The cache simulation is synchronous, implements two
levels of cache and is inclusive. Read and write references are not distinguished for the write-through simulation,
whereas the write-back simulation implements an L1 write-through and L2 write-back and distinguishes between read
and write references to cachelines. To facilitate the Callgrind simulation of Gaussian, a shell-script wrapper for the
executable was created which intercepted command-line arguments and then forwarded them to Valgrind/Callgrind
augmented with the appropriate cache simulation parameters i.e. cache size, associativity and linesize for L1 and L2
caches. The experiments used Valgrind version 3.2.2 with Callgrind.

Molecular Systems and Benchmarks

Four molecular systems were chosen for performance experiments, for which both HF and B3LYP methods were
used. Benchmark systems 1 and 2 are respectively K+(H2O)11 and K+(H2O)80 water cluster complexes. The geome-
tries for these systems were obtained from molecular dynamics (MD) simulations of a potassium ion (K+) surrounded
by a cluster of water molecules at 300 Kelvin [14]. K+(H2O)11 contains all water molecules within a radius of 4 Å
from the central potassium ion, while K+(H2O)80 has a radius of 8 Å˙ The two systems were chosen to test the effect
of increasing the number of molecules. For both systems two basis sets are used, a moderate 6-31G* set and an
extended 6-31++G(3df,3pd) set. Larger basis sets are in principle more accurate but lead to longer execution times
and greater memory use.

Benchmark system 3 is based on the Valinomycin molecule. It is derived from the Gaussian G03 quality assurance
(QA) suite and, reflecting its number in the QA suite, is referred to as test397. It is a widely used benchmark.

Benchmark system 4, referred to as α - Al2O3, is based on a Periodic Boundary Condition (PBC) [15] calculation
and consists of three Aluminum trioxide molecules which form an infinite sheet in the (0001) orientation [20]. The
system was chosen as it exercises a slightly different code path through the Gaussian code.

In summary, a total of four distinct molecular systems were chosen. For the K+(H2O)11 and K+(H2O)80 systems
two different basis sets were used, 6-31G* and 6-31++G(3df,3pd), while for test397 and α - Al2O3

† the 3-21G and
3-21G* basis sets were used respectively. This gives rise to a total of five benchmark systems.

Each of the benchmark systems were run five times. The data from these were processed using a series of Python
scripts which subsequently aggregated performance counter data. The least-squares fit for the LPM was performed
using NumPy. Blocking factors ranging from 2 Kw (KiloWords) up to 1024 Kw (16Kb to 8 MB) were used with the
PRISM algorithm; where a KiloWord is equal to 8 Kilobytes.
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Table 1: Cycle count per LTot for K+(H2O)11 using HF/6-31G* on a 2.2Ghz AMD848 Opteron.

Total Asy. Avg. Cycle count (x109)
LTot NoQrt Lim QPB. 4 Kw 16 Kw 32 Kw 64 Kw 256 Kw 1024 Kw

0 352176 66 5336 1.01 0.89 0.84 0.98 0.97 1.30
1 708932 187 3791 3.07 2.54 2.36 2.69 3.36 4.02
2 806845 362 2229 5.96 4.66 4.37 4.70 6.37 7.72
3 589046 378 1558 8.51 6.17 5.72 6.21 8.22 10.4
4 310929 286 1087 9.12 6.53 5.70 5.88 7.86 10.4
5 116550 112 1041 6.48 5.24 4.53 4.20 5.52 7.72
6 32097 34 944 3.24 2.92 2.35 2.02 2.67 3.67
7 5651 5 1130 0.95 0.94 0.84 0.67 0.67 1.01
8 623 1 623 0.17 0.17 0.17 0.17 0.17 0.17

Total Cycles (x1010) 3.85 3.00 2.69 2.75 3.58 4.64
% Increase from 32 Kw +30.17 +10.56 0.00 +2.32 +24.94 +42.10

Asy. Lim – Asymptotic Limit
Avg. QPB – Average number of Quartets per batch, without the use of cache blocking

4. The Effect of Cache Blocking on the PRISM ERI Algorithm

The objective of this section is to investigate the effects of cache blocking on the batch sizes and execution time
for different quartet types within the PRISM algorithm. One HF SCF cycle on the AMD848 using a single CPU for
K+(H2O)11/6-31G* takes 13 sec., K+(H2O)11/6-31++G(3df,3pd) takes 21.4 min., K+(H2O)80/6-31G* takes 20 min.
and K+(H2O)80/6-31++G(3df,3pd) takes 3.4 days. Detailed data for one cycle of a HF SCF using the K+(H2O)11
system with the 6-31G* basis set on the 2.2Ghz AMD848 Opteron system is presented in Table 1. The data and trends
presented here are representative of the what is observed for larger systems. There are five major columns in the table
which are divided into two sections. The first major section has four columns for the total angular momentum of the
shell quartet (LTot), the total number of quartets (Total NoQrt) of that angular momentum, the asymptotic limit (Asy.
Lim) for the number of shell quartets types of this angular momentum, and the average number of quartets per batch.

Expanding on the above, the value of LTot is given by the sum of the angular momenta for the four Cartesian
Gaussian functions that make up a shell quartet. Since in this system the maximum angular momentum value for any
basis function is 2 (a d function), the maximum LTot value is 4 × 2 or 8. As all four functions in the quartet must have
the maximum angular momentum value possible, there are relatively few quartets of this type (623). Likewise when
LTot is zero every function in the quartet must have the minimum possible angular momentum value of zero. This is
somewhat more common since the construction of the 6-31G* basis sets results in more functions with low angular
momentum than high angular momentum. Thus we find more quartets of this type (352176). In between these two
LTot values we find the number of quartets increases to some maximum. In this case the maximum is 806845 quartets
that occurs for an LTot value of 2.

The LTot value does not, however, fully characterise the quartet type. In addition to the angular momentum of
each function, the contraction scheme used to create each function is a distinguishing factor. The third column in
Table 1 labelled ‘Asy.Lim.’, gives the number of unique quartet types of a given LTot value. The sum of these values
is the minimal number of ERI batches that could be used to compute the ERIs if no cache blocking was implemented.
If this were the case then the average number of quartets per batch is the value given in column four; and this would
be the average vector length for the inner loop in the PRISM algorithm.

Evaluating shell quartets of high LTot value requires more operations than for shell quartets with low LTot values,
but there are more quartets of low LTot value than of high LTot value. Thus predicting the LTot value for the shell
quartet that will take the most number of cycles to compute is hard, and this is anyway likely to vary from machine to
machine and be a function of cache blocking. This is evident from Table 1; the LTot value that consumes most of the
cycles is found by looking down anyone of the cycle count columns and observing where the maximum count occurs.
Thus, for the 4 Kw cache blocking size the maximum cycle count is 9.12× 109 at an LTot value of 4, while for the
256 Kw cache blocking size the maximum is 8.22×109 that occurs at a different LTot value of 3.

The results in Table 1 also show that there is no single optimal cache blocking size. That is, looking across each
row for the various LTot values we find that the smallest cycle counts occur with a blocking factor of 32 Kw for LTot
values from 0-4, but for LTot values from 5-8 the smallest counts occur for the 64 Kw blocking factor. An ideal
algorithm would therefore modify the cache blocking according to LTot value, and possibly at a finer level than this.
This is not done in the current version of the G03 code, rather there is a single blocking factor. In this respect the final
two rows of the table show that if a single cache blocking size is used, then it should be 32 Kw; that increasing this
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Table 2: Self-fitting errors for the HF and B3LYP methods, between measured Cycle counts and those obtained using the LPM.

Micro-
processor

% Self-Fitting Error
% Avg.
Error

σK+(H2O)11 K+(H2O)80 test397 α-Al2O3
A∗ B† A∗ 3-21G 3-21G*

H
F

Opteron 3.0 1.0 2.3 1.9 1.3 1.9 0.8
Athlon64 4.5 5.8 5.3 6.0 1.8 4.7 1.7

EM64T 2.7 1.4 2.0 2.7 0.8 1.9 0.8
Pentium 4 2.3 1.8 2.3 2.2 0.5 1.8 0.8

Pentium M 2.0 0.8 1.9 2.5 1.0 1.6 0.7
G5 1.8 1.5 2.3 2.7 2.2 2.1 0.5

G5-XServe 2.4 1.7 2.0 2.9 2.4 2.3 0.5
% Avg. μp error 2.7 2.0 2.6 3.0 1.4

σ 0.9 1.7 2.0 2.9 2.4

B
3L

Y
P

Opteron 1.2 2.4 1.8 1.3 6.8 2.7 2.3
Athlon64 3.3 6.5 4.8 4.5 5.4 4.9 1.2

EM64T 1.0 1.3 5.3 0.8 4.3 2.5 2.1
Pentium 4 0.9 1.4 1.5 1.3 3.7 1.8 1.1

Pentium M 2.0 0.8 1.2 1.3 2.1 1.5 0.6
G5 1.1 1.4 2.8 2.1 2.0 1.9 0.7

G5-XServe 1.3 1.6 3.1 2.5 2.8 2.3 0.8
% Avg. μp error 1.5 2.2 2.9 2.0 3.9

σ 0.9 2.0 1.6 1.3 1.8
A∗ – 6-31G* basis set B† – 6-31++G(3df,3pd) basis set

to 64 Kw causes the execution to go up by a modest 2.32%, while reducing it to 16 Kw has a much great penalty of
10.56%.

Although not presented here4, it was found that for all of the benchmark systems, (a) there are different optimal
blocking factors depending on the system and basis set used; and (b) use of a single blocking factor skews the blocking
factor in favour of those values of LTot with large number of batches and shell-quartets with moderate total angular
momentum.

5. A Linear Performance Model

In Section 4 it was shown that the overall execution time of the Gaussian code varies significantly according to
the size of the cache blocking parameter used by the PRISM ERI evaluation algorithm. This section seeks to exploit
those variations in order to derive the α,β, and γ fitting coefficients that are part of the LPM. Using five of the
benchmark molecular systems, hardware performance counter results were obtained for cycle count, L1 & L2 misses
and instruction counts for the various hardware platforms. PPCoeffs were then obtained for each benchmark system
separately. Even though the PPCoeffs are fitting coefficients it is useful to attribute physical meaning to these. Thus
α can be considered to be the CPI (Cycles per Instruction); β the L1 miss penalty; γ the L2 miss penalty. On fitting
some of the systems, negative values for β were obtained. This is clearly unphysical since it implies that an L1 cache
miss is beneficial. To remedy this we modified the LPM for all systems to include only instruction counts and L2
cache misses. For α the values range from 0.63 to 1.1 (i.e. on average instructions were taking 0.63 to 1.1 cycles
to complete), while values of γ range from 100 to 500 (i.e. the average cost of an L2 miss which required data to be
fetched from DRAM).

In Table 2 we summarize the observed self-fitting errors for the HF and B3LYP cycle counts (i.e. execution times)
across all hardware platforms expressed as a percentage. It is divided into two sections corresponding to the ‘HF’ and
‘B3LYP’ methods. In each section, the processor is on the left hand side followed by the self-fitting errors for each
system i.e. using PPCoeffs for the given hardware platform. In the case of HF calculations PRISM is responsible
for the majority of the runtime, whereas in the DFT B3LYP calculation the XC computation dominates with PRISM
making a slightly smaller contribution. If for HF we consider the error distribution for any given system across the
set of processors, i.e. going down the columns, then the average error ranges from 1.4% to 3.0% (σ ranges from 0.9
to 1.7). The error distribution for all processors, i.e. going down the % Avg. Error column, apart from the Athlon64
ranges from 1.6% to 2.3% (σ ranges from 0.5 to 0.8). For the Athlon64 the average error across all systems is 4.7%
(σ = 1.7). For B3LYP the fitting errors range from 1.5% to 3.9% (σ ranges from 0.9 to 2.0). The errors for any

4An extended version can be found in Chapter 4 of [21].
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Figure 1: Plots for Cycle counts obtained from simulation and hardware performance counters for K+(H2O)11/6-31G*. Simulation results were
obtained using Valgrind/Callgrind.

given processor across all systems for B3LYP range from 1.5% to 4.9% (σ ranges from 0.6 to 2.3). Thus, overall, the
self-fitting errors obtained across all processors have an upper bound error of approximately 5%.

To summarize, the self-fitting errors presented here for the HF and B3LYP methods show that the LPM can be
considered to be reasonably accurate in modelling molecular systems using both HF and B3LYP methods as a function
of instruction counts and L2 miss counts, across a range of processors and benchmark systems. We also find that the
LPM can obtain good cycle count fits of between 4.3% and 6.0% for the HF method and between 3.1% to 6.7% for
the B3LYP method, across all hardware platforms.

6. Performance Estimation using Functional Cache Simulation and the LPM

In the previous section it was shown that the LPM can be used to obtain cycle counts that are reasonably accurate,
if the instruction count, total L2 misses and PPCoeffs are known. In this section we combine the PPCoeffs obtained
by fitting measured results for the various hardware platforms with instruction counts and L2 misses obtained from
functional cache simulation, in order to predict algorithmic performance as a function of cache design. We used the
Callgrind tool, which is part of the Valgrind program supervision framework, to perform execution driven functional
cache simulation. We considered all seven hardware architecture types, but present results only for the K+(H2O)11
using HF/6-31G*.

Prior to exploring the effect of architectural changes on performance, it is important to validate the Callgrind
functional cache simulator. Thus, we present results comparing measured cycle counts with those obtained using the
LPM and functional cache simulation. Following this, we perform a detailed parametric study to identify parameters
of interest. This was performed using a cache configuration similar to an AMD Opteron. In this section, we also
consider results for varying L1, L2 cache linesize and total cache size for the Opteron, Pentium M and Pentium 4
architectures.

Validation of the Callgrind Functional Cache Simulator
Figure 1 presents plots comparing cycle counts obtained from simulation and hardware performance counters.

The ‘H/W Counters’ curve corresponds to hardware performance counter results and the ‘Simulation + LPM’ curve
corresponds to the use of PPCoeffs and the LPM (Equation 1) for each platform using ICount and L2Misses which were
obtained from Callgrind. For the Opteron, the use of the LPM and PPCoeffs with values for instruction count, total
L2 misses from simulation produces a result which is in very good agreement with the measured cycles counts. On
the Athlon64, the LPM results are in good agreement up to 256 Kw, after which it varies marginally from hardware
counter results. There is good agreement of results for the EM64T, Pentium 4 and Pentium M systems. Excellent
agreement is found for cycle counts for the PowerPC. The LPM using instructions and L2 misses from simulation
is able to reproduce cycle times rather well, even though the L2 misses produced by simulation had large deviations
from measured values. This variation is due to prefetch instructions and out-of-order execution features not being
modelled by Callgrind.

Though we do not present results for total instruction counts and L1 misses here, we found that Callgrind is able
to obtain accurate instruction counts and can produce reasonable to good reproductions of the L2 misses for most
systems. L1 misses were not accurately reproduced. Caution is to be taken as to which systems these can be applied
to, as prior validation is required. For the six processor types used the Opteron, Pentium 4 and Pentium M cache
configurations give reasonable results for PRISM.
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Figure 2: Valgrind/Callgrind cycle count results for varying L2 size ( MB) for K+(H2O)11 with HF/6-31G*.

A Parametric Cache Variation Study of PRISM’s Performance

As functional cache simulation in conjunction with the LPM can reproduce cycle counts with reasonable accuracy,
we now use fitted PPCoeffs with counts from functional cache simulation to make performance predictions for possi-
ble future cache configurations. Though we focus on cache based microarchitectural changes here, the LPM could be
easily re-parametrized to capture other microarchitectural elements [22].

Variation of L1, L2 Linesize and Total Cache Size for Three Hardware Architectures
The use of the LPM with instruction counts and cache misses obtained from functional cache simulation was

validated in the previous section. In previous work [10], we’d performed an in depth cache parameter variation study
of an Opteron like cache which indicated the relative importance of L1 and L2 read, write misses and total unified
L2 size. Detailed breakdowns of read and write misses showed that PRISM’s cache performance is being limited by
read misses generated during ERI computation [10]. We obtained an 8% improvement by increasing the L1 linesize
(from 64 bytes to 256 bytes) and a 4% improvement by increasing the L2 linesize (from 64 bytes to 128 bytes) 5. A
20% improvement was observed when the unified L2 cache was increased from 1 MB to 8 MB. In this section, we
present results for varying total L2 size for the Opteron, Pentium M and Pentium 4 processors for a HF computation
performed on the K+(H2O)11 system using the 6-31G* basis set. A variety of cache blocking factors are used.

The aim is to assess the impact L2 cache size changes across three different hardware architectures types on the
PRISM ERI algorithm.

Results for the three microprocessors types with various L2 cache sizes and different G03 cache blocking factors
are shown in Figure 2. The x-axis has the blocking factor in Kw, the y-axis has the total unified L2 cache size (0.5
to 16 MB). The plot is a heat map of cycle counts obtained for the K+(H2O)11 system with HF/6-31G*, where each
pixel is color coded to indicate its relative weight to other pixels. We plot cycle counts using a log10 scale. The color
strip on top of each graph denotes the range of values with cool to warm colors denoting low to high cycle counts.
Contour lines for each plot are given at the bottom of each plot. Superimposed on each of the plot is a green line
denoting Gaussians’ default choice for cache blocking – i.e for a 0.5 MB L2 cache, it chooses a blocking factor of 32
Kw; for a 1 MB cache, it chooses 64 Kw and so on. For the Opteron, corresponding to every value in the y-axis, i.e.
the total cache size, islands of cycle count minima are to be found (e.g. the 10.38 and 10.45 contour lines). For the 1
MB cache, this occurs at 64 Kw; for 2 MB at 64 Kw; for 4 MB at 256 Kw; for 8 MB at 256 Kw and 16 MB for 1024
Kw. In two cases the 2 MB and the 8 MB case, Gaussian G03’s default blocking choice does result in the lowest
possible cycle count for a given cache size, for the K+(H2O)11/6-31G* system. For a 2 MB cache, the LPM predicts
a blocking factor of 64 Kw would perform better than the default choice of 128 Kw. The LPM predicts a 256 Kw
blocking factor would perform better for an 8 MB cache than 512 Kw. Similar trends are observed for the Pentium M
and Pentium 4.

5In-depth results can be found in Chapter 4 of [21].
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To summarize, we find that results obtained from simulation and the LPM were able to reproduce trends observed
using hardware counter measurements. Results for a parametric cache variation study using the Opteron, Pentium 4
and Pentium M cache configurations show that Gaussian’s default blocking factor works well for k300a-04/6-31G*
except in the case of 4 MB and 8 MB L2 cache sizes.

7. Related Work

Ramdas et. al [23] perform qualitative analysis and assess the prospects of mapping an implementation of the Rys
ERI method onto FPGAs. They present a quantitative analysis of the ‘bootstrap’ phase of Rys ERI evaluation, which
corresponds to ‘Generate Significant Shell-Pair List’ for the PRISM algorithm. A discrete event simulation is used
to determine the impact of arithmetic units (adders and multipliers) in the FPGA. In comparison we considered the
PRISM ERI algorithm, its ERI batching behaviour, cache blocking effects on observed performance.

Franke et. al. [24, 25] developed a cycle-approximate instruction set simulation methodology which uses prior
training and regression based performance prediction for a series of embedded application benchmarks. The model
requires instruction and memory access counter information, which are fitted to observed cycle counts obtained from
an ARM v5 cycle accurate simulator. The prediction phase uses functional simulation to obtain instruction and
memory access counters, which are then used to obtain fits regression coefficients obtained from prior training runs.
Cycle counts are found to be in error by 5%. The LPM is lightweight in obtaining application specific performance
characteristics. PPCoeffs are obtained using hardware counter data which can then be used by either trace based or
execution based simulators. Franke’s general approach is very similar to that taken here in obtaining least-squares
fits for the LPM. Unlike Franke, we have focused on ERI evaluation and obtained fits across a range of hardware
platforms and benchmark molecular systems. The LPM’s results vary from 3.3% to 7.9%.

8. Discussion, Conclusions and Future Work

A linear performance model was proposed to model the measured execution time for the PRISM ERI algorithm.
PPCoeffs (α, γ) were obtained for a set of benchmark systems. The α PPCoeff refers to how well the code uses the
superscalar resources of the processor, γ corresponds to the average cost in cycles of an L2 miss, which required cache
lines to be fetched from DRAM. It was shown that the LPM can produce good fits for measured cycle counts obtained
using hardware performance counters. Using a set of test molecular systems, it was found that the optimal blocking
factor is both platform and computation specific.

Evaluation of the LPM in conjunction with functional cache simulation shows it is able to reproduce the trends
and cycle counts as a function of varying the cache blocking factor. A parametric cache variation study of the PRISM
algorithm was performed and this showed that L1 linesize and total L2 size impact on the algorithm’s performance.

In [26, 27, 28] we have extended the LPM to account for modern multi-core processors, NUMA memory place-
ment effects and use the LPM for the parallel OpenMP version of PRISM. For future work, it would be useful to test
the use of the LPM at runtime to aid in searching for optimal blocking factors for an entire SCF cycle. Data could be
gathered for the first couple of SCF cycles, to obtain PPCoeffs. Then the blocking factor could be varied by starting
from the default and taking measurements for an increased and decreased blocking factor. Once the blocking factor
with the lowest cycle count is measured, it can be used for the remaining SCF cycles. We also intend, for future work,
to study the performance impact of shared last-level of cache on multi-core systems using the LPM.

Wallin et. al [29], point out in their paper that increased cacheline size aids scientific applications. The design
of modern microprocessors is largely driven by commercial workloads, most of which have poor data-locality and
suffer from false-sharing, and thus the cacheline sizes of microprocessors are usually 64 bytes. Wallin et. al advocate
the judicious use of prefetching to mimic the effect of larger cachelines. Our cache variation experiments indicate
that there is scope to reduce L1 and L2 read and write misses. This can be achieved by incorporating a series of
prefetch techniques. One possible way of achieving this, in future work, is through the use of a prefetch queue [30]
in sections of code which exhibit large misses. A prefetch queue is a FIFO queue which holds n address that need to
be prefetched. The queue is effective in handling memory references which are interspersed throughout memory. The
depth of the queue, which is determined experimentally, is deep enough to ensure that once values are popped off the
stack, the cacheline of interest is cache resident.
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