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ABSTRACT
Given the relationship between hippocampal atrophy and cognitive impairment in various pathological conditions, hippocampus 
segmentation from MRI is an important task in neuroimaging. Manual segmentation, though considered the gold standard, is 
time-consuming and error-prone, leading to the development of numerous automatic segmentation methods. However, no study 
has yet independently compared the performance of traditional, deep learning-based and hippocampal subfield segmentation 
methods within a single investigation. We evaluated 10 automatic hippocampal segmentation methods (FreeSurfer, SynthSeg, 
FastSurfer, FIRST, e2dhipseg, Hippmapper, Hippodeep, FreeSurfer-Subfields, HippUnfold and HSF) across 3 datasets with man-
ually segmented hippocampus labels. Performance metrics included overlap with manual labels, correlations between man-
ual and automatic volumes, volume similarity, diagnostic group differentiation and systematically located false positives and 
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negatives. Most methods, especially deep learning-based ones that were trained on manual labels, performed well on public da-
tasets but showed more error and variability on clinical data. Many methods tended to over-segment, particularly at the anterior 
hippocampus border, but were able to distinguish between healthy controls, MCI, and dementia patients based on hippocampal 
volume. Our findings highlight the challenges in hippocampal segmentation from MRI and the need for more publicly accessible 
datasets with manual labels across diverse ages and pathological conditions.

1   |   Introduction

Using structural magnetic resonance imaging (MRI) to anal-
yse the morphology of the hippocampus is crucial in both 
clinical and research neuroimaging. The correlation between 
hippocampal atrophy and cognitive impairment has long 
been established (Nadel and O'Keefe  1978), implicating the 
hippocampus in various neurological and psychiatric condi-
tions such as Alzheimer's disease (AD) (Barnes et  al.  2009), 
mild cognitive impairment (MCI) (Jack et al. 1999), epilepsy 
(Thom 2014) and schizophrenia (Csernansky et al. 1998). For 
example, hippocampal atrophy stands as a well-established 
biomarker of AD, with volumetric measurements demonstrat-
ing the capability to distinguish between healthy older adults 
and patients at mild to advanced stages of the disease (Frisoni 
et al. 2008; Jack et al. 1997). In the interest of early detection 
and treatment of neurodegenerative disorders such as AD, it is 
unsurprising that extensive research effort has been directed 
towards developing efficient and accessible methods to accu-
rately and reliably segment the hippocampus from MRI.

Manual segmentation of the hippocampus from MRI is widely 
regarded as the ‘gold standard’ for volumetric measurement 
(Dill et  al.  2015). However, manual segmentation is a time-
consuming process, rendering it impractical for analysing 
large datasets. Likewise, issues with inter- and intra-rater 
reliability are prevalent, and results often vary significantly 
depending on the manual segmentation protocol employed 
(Boccardi et  al.  2011). In response to these limitations, nu-
merous automatic hippocampal segmentation methods have 
been proposed. Traditional methods of subcortical segmenta-
tion, such as FreeSurfer (Fischl 2012) and FIRST (Patenaude 
et  al.  2011), rely on model-based approaches. Each of these 
methods employs a Bayesian framework, where FreeSurfer 
uses deformable registration to determine subcortical la-
bels, while FIRST uses active shape and appearance models. 
However, these methods, in practice, are time-consuming and 
resource-intensive, making them less efficient for processing 
large datasets.

Recently, there has been a surge in publicly available, supervised 
deep-learning-based segmentation algorithms, offering shorter 
runtimes and heightened accuracy compared to traditional 
methods (Goubran et  al.  2020; Henschel et  al.  2020; Thyreau 
et  al.  2018). For example, methods using convolutional neural 
networks (CNN) learn from existing hippocampus labels in a 
set of training data to identify and extract features to segment 
the hippocampus, with the intention of learning how to segment 
unseen images, measured using a separate test set. However, 
these methods face challenges due to the limited number of 
datasets containing manually labelled ground truth images for 
training. Moreover, the variance within training sets—such 

as sample demographics and scanner sequences—is quite lim-
ited, which underscores the importance of assessing the trans-
fer of the learned segmentation approach to novel datasets and 
datasets that may more accurately reflect real-world, clinical 
populations.

Most studies introducing a new hippocampal segmentation 
technique benchmark the new technique against traditional 
methods such as FreeSurfer and FIRST, and other, newer tech-
niques such as recently published deep learning-based methods 
(Goubran et  al.  2020). Likewise, hippocampal segmentation 
methods that segment subfields (DeKraker et  al.  2022; Poiret 
et al. 2023) benchmark across other subfield segmentation meth-
ods, so it is unclear how these methods compare to traditional 
sub-cortical segmentation and deep learning-based methods 
that segment the whole hippocampus. Currently, no study has 
aimed to independently assess the performance of traditional, 
deep learning-based and hippocampal subfield segmentation 
methods within a single investigation.

Our objective was to assess the performance of established and 
recent techniques for segmenting the hippocampus from T1-
weighted MR images across three distinct datasets containing 
manual hippocampus labels. Broadly, our inclusion criteria en-
compassed segmentation methods that are publicly available, 
freely downloadable and accept a single T1-weighted (T1w) 
image as input. For methods focusing on hippocampal subfields, 
we collapsed over subfields and solely evaluated the entire hip-
pocampal mask. We were interested in a range of performance 
metrics including overlap with manual labels, correlations be-
tween manual and automatically segmented volumes, the ability 
to separate diagnostic groups based on volume and the location 
and number of systematically located false positives and false 
negatives within a method.

2   |   Method

2.1   |   Datasets

Each segmentation method was tested against manual labels in 
three datasets: ADNI HarP, MNI-HISUB25 and an in-house data-
set of a subset of images collected by the Oxford Brain Health Clinic 
(OBHC). Table 1 presents the demographics from each dataset.

The HarP dataset (Boccardi, Bocchetta, Morency, et al. 2015) 
uses data from the Alzheimer's disease Neuroimaging 
Initiative (ADNI) database (adni.​loni.​usc.​edu), and consists of 
135 T1-weighted MRI scans. The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD, and is primarily focused on inves-
tigating the progression of MCI and early AD. The dataset 
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contains 1.5T and 3T-MRI scans acquired at a resolution of 
1.0 × 1.0 × 1.2 mm with scanners from multiple MRI manufac-
turers (GE, Philips and Siemens). The images were acquired 
using an MP-RAGE sequence with parameters optimised for 
different scanners—for more details, see (Jack Jr. et al. 2008). 
Manual labels were created using the HarP protocol that is de-
scribed in detail elsewhere (Boccardi, Bocchetta, Apostolova, 
et  al.  2015), but briefly, a HarP segmentation includes the 
whole hippocampal head, body and tail, the alveus and whole 
subiculum based on the boundary with the entorhinal cortex. 
The dataset consists of 45 subjects with Alzheimer's disease 
(AD), 46 mildly cognitively impaired subjects (MCI) and 44 
older adult control subjects (CN). Of the 135 subjects, 68 were 
scanned on a 1.5T machine (23 Siemens, 24 GE, 21 Philips) 
and 67 were scanned on a 3T machine (23 Siemens, 22 GE, 22 
Philips).

The MNI-HISUB25 (Kulaga-Yoskovitz et al. 2015) dataset con-
tains manual hippocampal subfield labels traced from T1 and T2 
weighted images collected from 25 healthy subjects. Data were 
acquired on a 3T Siemens TimTrio scanner using a 32 phased-
array head coil. T1w images were acquired at a resolution of 
1.0 × 1.0 × 1.0 mm, and to increase the signal-to-noise ratio, two 
scans were acquired, motion corrected, and averaged into a sin-
gle volume. The manual protocol was guided by intensities and 
morphological characteristics of the hippocampal molecular 

layer and divided the hippocampus into 3 subregions: subicular 
complex, Cornu Ammonis (merged CA1, 2 and 3 regions) and 
CA-4-dentate gyrus.

The Oxford Brain Health Clinic (OBHC) is a joint clinical-
research service for patients of the UK National Health Service 
(NHS) who have been referred to a memory clinic (O'Donoghue 
et al. 2023). At the OBHC, patients are offered high-quality as-
sessments not routinely available, including a multimodal brain 
MRI scan acquired on a Siemens 3T Prisma scanner using a 
protocol matched with the UK Biobank imaging study (Griffanti 
et  al.  2022; Miller et  al.  2016). Patients are invited to partici-
pate in research and over 90% consented to their clinical data, 
including subsequent diagnosis, being used for research pur-
poses, representing a real-world clinical dataset. The data are 
stored on the OBHC Research Database, which was reviewed 
and approved by the South Central–Oxford C research ethics 
committee (SC/19/0404). Manual labels for the hippocampi 
were created for 29 subjects (17 patients who received a demen-
tia diagnosis, 8 MCI patients, and 4 with no dementia-related 
diagnosis—NDRD).

Manual delineation of the hippocampus for the OBHC data-
set followed the approach described by Cook et al. (1992) and 
Mackay et  al.  (2000), with reference to the Duvernoy atlas 
(Duvernoy  1998). High intra-rater test–retest reliability was 
previously established on a separate dataset segmented twice 
at least 2 weeks apart (left hippocampus ICC 0.96, 95% con-
fidence interval: 0.92–0.98; right hippocampus ICC 0.87, 95% 
confidence interval: 0.77–0.93) (Voets et al. 2015). To minimize 
variations in the segmentation of the hippocampus across sub-
jects, the intensity range of the structural images was set to the 
same value for all the T1-weighted images. The hippocampus 
was delineated in all three planes (axial, sagittal and coronal). 
Anteriorly, the hippocampus could be distinguished from the 
amygdala in the sagittal view by locating the white matter of 
the alveus. The posterior aspects of the hippocampus contin-
ued up to the splenium of the corpus callosum. Inferiorly, the 
white matter of the parahippocampal gyrus was excluded, and 
the lateral boundary extended to the alveus separating the hip-
pocampus from the temporal horn of the lateral ventricle.

2.2   |   Automatic Segmentation Methods

We evaluated the performance of 10 segmentation algorithms. 
To be included in our study, the algorithm was required to be 
freely and publicly available for download. There were six al-
gorithms that performed hippocampus-only segmentations 
(Hippodeep, Hippmapper, e2dhipseg, HippUnfold, HSF, 
FreeSurfer-Subfields) and four that created segmentations of 
a range of brain structures (FreeSurfer, SynthSeg, FastSurfer, 
FIRST). For comprehensive information on each of the segmen-
tation methods, please see the related publications. All algo-
rithms were run using the default or recommended settings with 
a raw, full head T1w image as input, on either a MacBook Pro 
(Apple M2 Pro 2023, 16GB RAM), a machine with a NVIDIA 
GeForce GTX 1070, running Ubuntu V22.04 or on a dedicated 
cluster composed of CPU servers (16GB RAM per core), GPU 
servers (K-series NVidia with CUDA) and Grid Engine queuing 
software.

Summary

•	 Key messages
○	 We evaluated 10 automatic hippocampal segmen-

tation methods, including traditional and deep 
learning-based approaches, across 3 datasets with 
manually segmented hippocampus labels.

○	 While deep learning-based methods trained on 
manual labels perform well on public datasets, they 
show more errors and variability on unseen data 
that are more reflective of a clinical population.

○	 Based on our investigation, Hippodeep and 
FastSurfer emerge as particularly attractive options 
for researchers looking to segment the hippocam-
pus, based on reliability, accuracy and computa-
tional efficiency.

•	 Practitioner points
○	 Although deep learning based automatic hippocam-

pal segmentation methods offer faster processing 
times—a requirement for translation to clinical 
practice—the lack of variance within training sets 
(such as sample demographics and scanner se-
quences) currently prevents transfer of learning to 
novel data, such as those acquired clinically.

○	 More training data with varying demographics, 
scanner sequences and pathologies are required to 
adequately train deep learning methods to quickly, 
accurately and reliably segment the hippocampus 
for use in clinical practice.

○	 Hippodeep and FastSurfer emerge as the most at-
tractive options for use by practitioners due to reli-
able and accurate performance on data more closely 
resembling clinical samples, ease of use and compu-
tational efficiency.
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Hippodeep (Thyreau et  al.  2018) was run using the PyTorch 
version (https://​github.​com/​bthyr​eau/​hippo​deep_​pytorch) on a 
CPU (MacBook Pro or cluster). Hippodeep is based on a CNN 
trained on hippocampus outputs from FreeSurfer that were de-
rived from 2500 images spanning 4 large cohort studies, as well 
as a small in-house sample of manually labelled ground truth 
images. The input to the algorithm was a T1w image, and the 
output of the algorithm was a probabilistic segmentation map, 
which was thresholded at 0.5 as recommended.

Hippmapper (Goubran et al. 2020) version 0.1.1 was run using 
(https://​github.​com/​AICON​Slab/​Hippm​apper/​​tree/​master) 
on a GPU (GeForce GTX 1070) or via Singularity (cluster). 
Hippmapper is based on a 3D CNN trained on manual segmen-
tations from 259 older adults with a range of diagnoses leading 
to extensive atrophy, vascular disease and lesions, including the 
135 images from the ADNI HarP dataset. The input to the al-
gorithm was a T1w image, which can either be whole or skull 
stripped. For these analyses, a whole T1w was provided. The 
output was a single file containing a binarised, bilateral hippo-
campal mask, which was then separated into a left and right hip-
pocampus mask file. As Hippmapper was trained using ADNI 
HarP data, it was excluded from evaluation on the ADNI HarP 
dataset.

e2dhipseg (Carmo et al. 2021) was run on a CPU (MacBook Pro 
or cluster) using the recommended affine registration option 
(FLIRT) (https://​github.​com/​MICLa​b-​Unica​mp/​e2dhi​pseg). 
The architecture of e2dhipseg consists of an ensemble of 2D 
CNNs that were trained on the ADNI HarP dataset and 190 im-
ages collected locally for an epilepsy study. The algorithm cre-
ates a set of segmentations that are then post-processed into a 
final hippocampal mask. The input to the algorithm was a T1w 
image, and the output was a single mask file containing both 
left and right hippocampal masks. The output mask was divided 
into a left and right hippocampus mask file and then thresh-
olded at 0.5, as recommended. As e2dhipseg was trained using 
ADNI HarP data, it was excluded from evaluation on the ADNI 
HarP dataset.

HippUnfold (DeKraker et al. 2022) version 1.3.0 is a BIDS app 
that was run using Docker or Singularity (cluster) (https://​
github.​com/​khanl​ab/​hippu​nfold​). HippUnfold uses CNNs 
and topological constraints to generate folded surfaces that 
correspond to an individual subject's hippocampal mor-
phology and was designed and trained with the Human 
Connectome Project 1200 young adult data release. The data 
are first gathered via snakebids before pre-processing, tis-
sue class segmentation, post-processing and unfolding (see 
DeKraker et al. 2020). As this algorithm is a BIDS app, data 
from all datasets were first renamed and organised into the 
BIDS file structure format before running HippUnfold using 
the default settings. The input is either a T1w image, a T2w 
image, or both, and several output files are generated includ-
ing hippocampal masks with subfields, surface metrics and 
warps. Here, HippUnfold was run with a T1w image as input, 
and the resulting hippocampal masks with subfields were bi-
narised and combined into a whole hippocampus mask.

Hippocampal Segmentation Factory (HSF) version 4.0.0 was run 
on a GPU (MacBook Pro or cluster) (https://​github.​com/​cleme​
ntpoi​ret/​HSF). The HSF pipeline includes brief pre-processing 
of raw T1w or T2w images and segmentation of hippocampal 
subfields through deep learning models trained on images from 
12 datasets (411 subjects in total) with manual labels spanning 
across the chronological age range and multiple pathological 
groups, including the 25 manual labels from the MNI-HISUB25 
dataset. HSF was run using the default and/or recommended 
settings, including using the ROILoc package (https://​github.​
com/​cleme​ntpoi​ret/​ROILoc) to centre and crop T1w images. 
The input was a T1w image, and the output includes hippo-
campal masks with subfields, which were then binarised into 
a whole hippocampus mask. As HSF was trained using MNI-
HISUB25 data, it was excluded from evaluation on the MNI-
HISUB25 dataset.

FIRST (Patenaude et  al.  2011) was run on a CPU (MacBook 
Pro or cluster). FIRST is a Bayesian appearance model-based 
tool that incorporates both shape and intensity information 

TABLE 1    |    Demographic information and hippocampal volume from manual labels for ADNI HarP, MNI-HISUB25 and Oxford Brain Health 
Clinic (OBHC) datasets.

ADNI HarP MNI-HISUB25 OBHC

AD MCI CN CN Dementia MCI NDRD

N 44 45 42 25 17 8 4

Age (years)

Mean (SD) 74 (8) 75 (8) 76 (7) 31 (7) 81 (7) 79 (5) 75 (6)

Range 63–90 60–87 61–90 21–53 72–101 73–86 66–82

Sex

Female 23 (52%) 19 (42%) 22 (52%) 13 (52%) 7 (41%) 5 (63%) 3 (75%)

Male 21 (48%) 26 (58%) 20 (48%) 12 (48%) 10 (59%) 3 (38%) 1 (25%)

Hippocampal volume (mm3)

Mean (SD) 2417 (530) 2678 (471) 3165 (518) 4386 (246) 2012 (669) 2163 (479) 2844 (554)

Range 1054–3953 1794–3878 2007–5140 3823–5036 1050–3490 1249–2920 2193–3711
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for segmentation, derived from a set of images from 336 sub-
jects, each of which was manually segmented by the Center for 
Morphometric Analysis (CMA). FIRST was run using the run_
first_all command specifying L_Hipp and R_Hipp as structures 
to segment. The output mask was then binarised using the rec-
ommended threshold.

FreeSurfer (Fischl 2012) version 7.4.1 was used. FreeSurfer was 
also developed using 336 subjects, each manually segmented by 
the CMA. The recon-all pipeline with default settings was run 
on all T1 images using parallel processing (computation time 
approximately 4 h per subject on CPU). The steps in the recon-
all pipeline are reported in detail elsewhere (Fischl et al. 2002). 
Hippocampal masks were extracted from the aseg.auto output 
and binarised.

SynthSeg (Billot et  al.  2023) was run on a CPU (cluster). 
SynthSeg is a whole brain segmentation CNN trained with 
synthetic data sampled from a generative model conditioned 
on segmentations, using a domain randomisation strategy that 
fully randomises the contrast and resolution of the synthetic 
training data. As the training images are generated with fully 
randomised parameters, the network is exposed to combina-
tions of morphological variability, resolution, contrast, noise and 
artefact, allowing the method to be used without retraining or 
fine-tuning. Hippocampal masks were extracted from the whole 
brain segmentation and binarised.

FreeSurfer Hippocampal Subfields and Nuclei of Amygdala 
(Iglesias et al. 2015) (from now on referred to as ‘FreeSurfer-
Subfields’) was developed using manual labels from ex 
and in  vivo samples that were combined using a Bayesian 
inference-based atlas building algorithm to form a single 
computational atlas. The data included 15 autopsy samples 
scanned at 0.13 mm isotropic resolution that were manually 
segmented into 13 different hippocampal structures, and a 
separate in vivo dataset of T1w whole brain MRI (1 mm resolu-
tion) containing annotations for neighbouring structures such 
as the amygdala and cortex. FreeSurfer-Subfields requires a 
whole brain T1w image that has been processed with recon-
all as input. The hippocampus component of the output masks 
(head, body, tail mask) was then binarised to create a whole 
hippocampus mask.

FastSurfer (Henschel et  al.  2020) version 2.2.0 (https://​
github.​com/​Deep-​MI/​FastS​urfer/​​) was run using Docker 
or Singularity (cluster). FastSurfer is a deep learning-based 
method that aims to present an alternative to FreeSurfer with 
a shorter run time. The FastSurferCNN architecture contains 
3 CNNs operating on coronal, axial and sagittal 2D slices and 
is trained on FreeSurfer parcellation following the Desikan–
Killiany–Tourville protocol atlas. The seg_only function was 
used to generate subcortical segmentations from a T1w image, 
and from these, hippocampal masks were extracted and 
binarised.

For FreeSurfer, FreeSurfer-Subfields and FastSurfer, post-
processing steps were required to allow the hippocampal masks 
to be compared with other segmentation algorithms. To do this, 
hippocampal masks were transferred back to the original image 
space using mri_label2vol and converted from mgz to NiFTi 

format using the function mri_convert. For these methods, hip-
pocampal volumes were extracted from the relevant aseg.stats 
output file.

2.3   |   Validation Metrics

Segmentation performance of each segmentation method was 
evaluated using common medical imaging segmentation met-
rics: Dice coefficient, 95th percentile Hausdorff distance (HD) 
and Pearson correlation between manual and automatically seg-
mented volumes. Dice coefficients, HD and volume similarity 
were implemented using the seg-metrics Python package (Jia 
et al. 2024).

Dice coefficient measures the overlap between two binary sets. 
It ranges from 0 to 1, where 1 indicates a perfect overlap be-
tween the ground truth (manually segmented) and predicted 
(automatically segmented) masks. HD was used as a metric to 
assess similarity in shape between the manual and automatic 
segmentations and is defined as the 95th percentile of the dis-
tances between the closest points in an automatic segmentation 
mask and a manual segmentation mask. HD95 is measured in 
millimetres, with a value of 0 mm indicating perfect prediction. 
Volume similarity is a measure of the volume size difference be-
tween the automatic segmentation mask and the manual seg-
mentation mask. A positive volume similarity value indicates an 
overestimation of volume in the automatic segmentation mask, 
a negative value indicates underestimation, and a 0 value indi-
cates perfect volume prediction.

2.4   |   Error Maps

Average error maps for each segmentation method were also 
created to understand where each method was systematically 
incorrect in specific regions of the segmentation. False positive 
error maps were calculated by subtracting the manual mask 
from the automatic mask, using fslmaths, and keeping only pos-
itive values, while for false negatives the negative values were 
kept. Individual T1w images were linearly (FLIRT) and non-
linearly (FNIRT) registered to MNI space, and the resulting 
warp fields were applied to transform individual false positive 
and false negative error maps into MNI space. The false nega-
tives and false positives were then averaged and shown on the 
T1 1mm MNI template for visualisation.

To calculate the number of false positive and false negative vox-
els in the anterior and posterior hippocampus, manual labels 
for each dataset were registered to MNI space and averaged for 
each hemisphere. The y-coordinate of the centre of gravity was 
computed from these average masks. Voxels with a y-coordinate 
greater than the centre of gravity were classified as anterior, 
while those with a y-coordinate less than the centre were classi-
fied as posterior.

2.5   |   Statistics

Statistical analyses and data visualisations were performed 
using R (R Version 4.3.1) and ggplot2 (Wickham 2016).
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Linear mixed effects models run using lme4 (Bates et al. 2015) 
were used to determine whether there were diagnostic group 
differences in hippocampal volume across segmentation meth-
ods. In these analyses, hippocampal volume was the outcome 
variable, chronological age, sex, segmentation method and 
diagnostic group were fixed effects, and subject was the ran-
dom effect. Post hoc pairwise t-tests were performed to explore 
group differences within segmentation methods. In these tests, 
a p value of less than 0.05 was considered statistically signifi-
cant. Associations between manually and automatically seg-
mented volumes were performed using Pearson's correlation.

Data are presented as mean ± SD in text, mean (SD) in tables, 
and mean ± SD in figures unless otherwise stated.

3   |   Results

3.1   |   ADNI HarP

3.1.1   |   Segmentation Metrics

Hippodeep, FIRST and SynthSeg demonstrated comparable per-
formance, yielding mean Dice scores of 0.82 ± 0.03, 0.80 ± 0.03 
and 0.79 ± 0.04, respectively (Figure  1A). The hippocampal 

subfield methods demonstrated similar performance based on 
mean Dice, but HippUnfold (0.75 ± 0.07) and HSF (0.74 ± 0.09) 
showed larger variance than FreeSurfer-Subfields (0.71 ± 0.04). 
FastSurfer (0.71 ± 0.04) and FreeSurfer (0.70 ± 0.05) demon-
strated the poorest mean Dice scores, but relatively tight Dice 
distributions. For 95th percentile HD, Hippodeep demonstrated 
the smallest (1.37 ± 0.25) while HSF demonstrated the largest 
value (2.45 ± 2.47) (Figure 1B).

Detailed results, including Dice coefficients and 95th percentile 
HD for each group and hemisphere, per segmentation method, 
are provided in Table 2. For a breakdown of segmentation met-
rics per field strength (1.5T and 3T) and scanner vendors (Philips, 
Siemens and GE) for each diagnosis group, see Tables S1–S3.

3.1.2   |   Volumes

FreeSurfer-Subfields and Hippodeep demonstrated volume 
similarities close to 0, and strong correlations with manual vol-
umes, indicating accurate volume estimates (0.06 ± 0.08 and 
−0.07 ± 0.10, respectively) (Table 3). HSF displayed the weakest 
correlations, with coefficients ranging from 0.43 to 0.82 across 
groups and hemispheres, indicating variable discrepancies be-
tween manual and automatic volume estimates, particularly for 

FIGURE 1    |    (A) Dice coefficients, (B) mean 95% Hausdorff distance and (C) volume similarity for automatic segmentation methods compared 
with manual hippocampal masks from the ADNI HarP dataset. (D) Correlations between manually segmented and automatically segmented vol-
umes for each segmentation method, averaged over diagnostic groups and hemispheres.
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the AD group. Similarly, the volume similarity values ranged 
between 0.32 and 0.53 across groups and hemispheres for HSF, 
indicating significant overestimation of volumes, particularly 
in the AD group. Apart from HSF, the segmentation methods 
demonstrated relatively consistent performance across di-
agnostic groups and hemispheres based on correlations, but 
FreeSurfer, SynthSeg, FastSurfer and FIRST tended to over-
estimate volumes, while HippUnfold tended to underestimate 
volumes.

3.1.3   |   Error Maps

Consistent with the positive volume similarity values, all seg-
mentation methods, except for HippUnfold, primarily showed 
false positives in the error maps, suggesting a systematic over-
segmentation, particularly along the hippocampus-amygdala 
border. This tendency is most pronounced in the anterior hip-
pocampal region in the axial slice (Figure  2A,B). HippUnfold 
displayed relatively high numbers of consistently located false 
negatives, particularly in the anterior hippocampus region 
(Figure 2C).

3.2   |   MNI-HISUB25

3.2.1   |   Segmentation Metrics

Hippmapper (0.86 ± 0.020) achieved the highest Dice coefficient, 
followed by Hippodeep (0.85 ± 0.02) and FIRST (0.83 ± 0.021). 
HippUnfold (0.79 ± 0.03), FastSurfer (0.79 ± 0.02), FreeSurfer-
Subfields (0.78 ± 0.03) and FreeSurfer (0.76 ± 0.03) performed 
comparably, while e2dhipseg (0.68 ± 0.12) yielded the poorest 
results (Figure 3A). Similarly, Hippmapper exhibited the small-
est 95th percentile HD (1.40 ± 0.17), followed by FreeSurfer-
Subfields (1.52 ± 0.25). Consistent with the Dice value and 
distribution, e2dhipseg performed the poorest (4.94 ± 6.20) 
(Figure  3B). Overall, there was far less variability in perfor-
mance between segmentation methods in this dataset com-
pared to ADNI HarP and OBHC, likely due to the lack of patient 

groups. Segmentation metrics separated by hemisphere are pre-
sented in Table 4.

3.2.2   |   Volumes

Correlations between manually and automatically segmented 
volumes notably weaken in the MNI-HISUB25 dataset com-
pared to the ADNI HarP and OBHC datasets (Figure 3D). The 
strongest correlation between manual and automatic volumes 
was observed for HippUnfold (r = 0.82), while no correlation 
was evident for e2dhipseg (r = −0.07). In this dataset, consid-
erable differences in correlation coefficients between hemi-
spheres were observed for certain methods, particularly in 
FIRST (right hemisphere: r = 0.61, left hemisphere: r = 0.43), 
FreeSurfer (right hemisphere: r = 0.61, left hemisphere: 
r = 0.48) and FreeSurfer-Subfields (right hemisphere: r = 0.55, 
left hemisphere: r = 0.34) (Table 3). Interestingly, there is a dis-
connect between Dice coefficients and volume correlations. 
Though FIRST was a strong performer based on Dice, the 
correlation between manual and automatic volumes was rela-
tively weak (r = 0.54) compared to HSF (r = 0.88), Hippmapper 
(r = 0.79) and Hippodeep (r = 0.78).

Volume similarity scores also vary within this dataset 
(Figure 3C). SynthSeg (0.22 ± 0.05), FastSurfer (0.21 ± 0.05) and 
FIRST (0.17 ± 0.07) demonstrated overestimation of volumes, 
while HippUnfold (−0.20 ± 0.04) and e2dhipseg (−0.54 ± 0.27) 
demonstrated underestimation. Hippodeep (−0.05 ± 0.05), 
Hippmapper (−0.05 ± 0.05), FreeSurfer (0.08 ± 0.08) and 
FreeSurfer-Subfields (0 ± 0.08) demonstrated volume similarity 
scores close to 0.

3.2.3   |   Error Maps

Figure 4 illustrates the systematic false positives and negatives 
for each segmentation method in the MNI-HISUB25 dataset. 
Hippmapper exhibited the fewest consistently located false posi-
tives and negatives, although all methods display false negatives 

TABLE 2    |    Approximate run times (CPU) and the approximate output file size for each segmentation method.

Segmentation method
Approximate run 

rime (CPU)
Approximate output 
file size (single run) Notes

FreeSurfer 4 h 300MB Parallel flag added to recon-all call

SynthSeg 2 min 35MB

FastSurfer 5 min 30MB Segmentation only mode, 
no_cereb flag used

FIRST 1 min < 1MB Specified hippocampus only

e2dhipseg 5 min < 1MB

Hippmapper 3 min 60MB

Hippodeep 7 s < 1MB

FreeSurfer-Subfields 35 min 300MB Requires full recon-all output

HippUnfold 60 min 2GB Requires data to be in BIDS format

HSF 3 min < 1MB
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TABLE 3    |    Mean volume, correlation coefficients, mean volume similarity, mean Dice coefficient and mean 95% Hausdorff distance across 
diagnostic groups and hemisphere for the ADNI HarP dataset.

FreeSurfer SynthSeg FastSurfer FIRST Hippodeep
FreeSurfer-

Subfields HippUnfold HSF

Left hemisphere volume (mm3)

AD 3019 (583) 3078 (564) 2971 (562) 2879 (581) 2096 (547) 2537 (471) 2007 (434) 4021 (633)

MCI 3340 (508) 3405 (501) 3362 (496) 3153 (467) 2454 (452) 2833 (451) 2232 (387) 4042 (557)

CN 3734 (590) 3891 (524) 3841 (578) 3636 (521) 2922 (512) 3213 (489) 2582 (388) 4384 (805)

Right hemisphere volume (mm3)

AD 3083 (646) 3174 (608) 3094 (620) 3041 (613) 2240 (614) 2649 (505) 2077 (448) 4236 (659)

MCI 3420 (542) 3485 (537) 3407 (525) 3300 (535) 2549 (483) 2943 (487) 2283 (390) 4202 (544)

CN 3785 (550) 3946 (545) 3887 (563) 3775 (534) 3044 (514) 3315 (432) 2599 (405) 4488 (589)

Left hemisphere correlation with manual volume (r)

AD 0.81 0.90 0.92 0.88 0.89 0.90 0.84 0.43

MCI 0.85 0.93 0.91 0.82 0.89 0.85 0.93 0.82

CN 0.88 0.87 0.88 0.72 0.90 0.85 0.93 0.48

Right hemisphere correlation with manual volume (r)

AD 0.90 0.89 0.93 0.76 0.86 0.92 0.88 0.46

MCI 0.92 0.92 0.94 0.84 0.92 0.91 0.92 0.64

CN 0.89 0.84 0.89 0.82 0.90 0.88 0.90 0.48

Left hemisphere volume similarity

AD 0.25 (0.13) 0.28 (0.10) 0.24 (0.09) 0.21 (0.10) −0.12 (0.11) 0.09 (0.09) −0.15 (0.12) 0.53 (0.17)

MCI 0.23 (0.09) 0.26 (0.07) 0.25 (0.08) 0.18 (0.09) −0.07 (0.09) 0.07 (0.09) −0.16 (0.07) 0.43 (0.09)

CN 0.17 (0.08) 0.22 (0.08) 0.21 (0.08) 0.15 (0.11) −0.07 (0.08) 0.03 (0.09) −0.18 (0.06) 0.32 (0.27)

Right hemisphere volume similarity

AD 0.21 (0.10) 0.25 (0.11) 0.22 (0.09) 0.20 (0.16) −0.12 (0.15) 0.07 (0.10) −0.18 (0.12) 0.52 (0.19)

MCI 0.22 (0.07) 0.25 (0.07) 0.23 (0.06) 0.19 (0.10) −0.07 (0.07) 0.08 (0.07) −0.17 (0.07) 0.43 (0.13)

CN 0.16 (0.07) 0.21 (0.08) 0.19 (0.07) 0.16 (0.09) −0.05 (0.08) 0.04 (0.07) −0.20 (0.07) 0.33 (0.15)

Left hemisphere Dice coefficient

AD 0.67 (0.05) 0.77 (0.04) 0.69 (0.04) 0.79 (0.03) 0.80 (0.03) 0.69 (0.04) 0.71 (0.08) 0.69 (0.09)

MCI 0.69 (0.04) 0.79 (0.03) 0.70 (0.04) 0.80 (0.03) 0.82 (0.03) 0.71 (0.04) 0.76 (0.04) 0.75 (0.05)

CN 0.74 (0.03) 0.82 (0.03) 0.74 (0.03) 0.82 (0.03) 0.84 (0.02) 0.74 (0.03) 0.78 (0.02) 0.76 (0.12)

Right hemisphere Dice coefficient

AD 0.67 (0.05) 0.78 (0.04) 0.68 (0.04) 0.79 (0.04) 0.80 (0.04) 0.69 (0.05) 0.71 (0.10) 0.70 (0.09)

MCI 0.69 (0.04) 0.80 (0.03) 0.70 (0.04) 0.80 (0.03) 0.82 (0.03) 0.71 (0.04) 0.75 (0.06) 0.75 (0.06)

CN 0.73 (0.02) 0.82 (0.02) 0.74 (0.03) 0.82 (0.03) 0.83 (0.02) 0.74 (0.02) 0.78 (0.03) 0.78 (0.06)

Left hemisphere 95% Hausdorff distance (mm)

AD 2.77 (0.82) 1.81 (0.50) 2.26 (0.32) 1.62 (0.24) 1.41 (0.21) 1.95 (0.49) 2.47 (1.41) 2.69 (1.35)

MCI 2.48 (0.46) 1.73 (0.27) 2.25 (0.23) 1.69 (0.27) 1.38 (0.26) 1.94 (0.32) 1.89 (0.78) 2.08 (0.43)

CN 2.20 (0.20) 1.56 (0.23) 2.11 (0.14) 1.70 (0.37) 1.30 (0.21) 1.82 (0.29) 1.67 (0.31) 2.78 (5.02)

(Continues)
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along the superior-medial or inferior-medial border of the hip-
pocampus. Consistent with the positive volume similarity val-
ues, FreeSurfer, SynthSeg, FastSurfer, FIRST and Hippodeep all 
demonstrate systematic over-segmentation, predominantly in 
anterior regions (Figure 4A,B). In line with its low Dice value, 
negative volume similarity score and significant performance 
variation, e2dhipseg exhibits a high number of consistently lo-
cated false negatives throughout the entire structure, indicating 
widespread under-segmentation (Figure 4C).

3.3   |   Oxford Brain Health Clinic

3.3.1   |   Segmentation Metrics

On average, Hippodeep (0.76 ± 0.06) and FIRST (0.76 ± 0.12) 
exhibited the highest Dice coefficients, followed closely by 
FreeSurfer-Subfields (0.74 ± 0.06), although notable varia-
tion was observed in the Dice scores for FIRST. HippUnfold 
(0.72 ± 0.09), FastSurfer (0.71 ± 0.06), FreeSurfer (0.69 ± 0.07), 

Hippmapper (0.69 ± 0.18) and SynthSeg (0.67 ± 0.09) showed 
similar Dice values, with HippUnfold and Hippmapper dis-
playing large distribution tails (Figure  3A). HSF (0.58 ± 0.15) 
and e2dhipseg (0.44 ± 0.26) were the poorest performers based 
on Dice, with both exhibiting substantial distribution tails at-
tributed to failure rates. Conversely, the 95% HD was smallest 
for HippUnfold (2.32 ± 1.09) and, as expected based on Dice, 
largest for e2dhipseg (6.90 ± 5.04) (Figure 5B). Additionally, in 
this dataset, FreeSurfer recon-all failed for two subjects who 
were removed from subsequent analysis. Overall, segmentation 
performance was considerably poorer in this dataset compared 
to ADNI HarP and MNI-HISUB25.

3.3.2   |   Volumes

Hippocampal volumes for each group and hemisphere, along 
with the correlation between manually segmented and au-
tomatically segmented volumes, are detailed in Table  4. 
FastSurfer and Hippodeep demonstrated the strongest 

FreeSurfer SynthSeg FastSurfer FIRST Hippodeep
FreeSurfer-

Subfields HippUnfold HSF

Left hemisphere 95% Hausdorff distance (mm)

AD 2.46 (0.42) 1.63 (0.35) 2.18 (0.19) 1.69 (0.37) 1.46 (0.34) 1.79 (0.32) 2.45 (1.25) 2.66 (1.18)

MCI 2.40 (0.41) 1.64 (0.29) 2.18 (0.28) 1.72 (0.29) 1.37 (0.22) 1.74 (0.28) 2.06 (1.01) 2.11 (0.69)

CN 2.12 (0.20) 1.51 (0.18) 2.02 (0.16) 1.60 (0.25) 1.30 (0.19) 1.68 (0.23) 1.78 (0.36) 2.39 (3.03)

Note: Data are displayed as Mean (SD), except for when presenting Pearson correlation coefficients.

TABLE 3    |    (Continued)

FIGURE 2    |    (A) False positive (FP) (red-yellow) and false negative (FN) (blues) heat maps for each segmentation method projected onto the 
standard MNI152 T1 template image for ADNI HarP. The colour bar represents the proportion of times a given voxel was incorrectly labelled in 
comparison to the manually segmented hippocampal mask. (B) Number of false positive and (C) false negative voxels in the anterior and posterior 
hippocampus regions for each segmentation method, averaged over hemispheres and diagnostic groups.
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correlation between manual and automatically segmented 
volumes on average (both r = 0.93) (Figure  3C), with both 
methods achieving correlation coefficients > 0.85 across 
hemispheres and diagnostic groups. HSF demonstrated the 
weakest correlation between manual and automatic volumes 
(r = 0.52), despite achieving correlation coefficients of 0.93 and 
0.96 for the left and right hemispheres, respectively, in NDRD 
subjects. There is greater variation in correlation coefficients 
between diagnostic groups and hemispheres in the OBHC 
dataset compared to ADNI HarP. For example, FreeSurfer-
Subfields demonstrated a correlation of r = 0.65 and r = 0.79 
for subjects with an MCI diagnosis in the left and right hemi-
spheres, respectively, but all other correlations were > 0.89, 
while e2dhipseg performed particularly poorly in NDRD sub-
jects compared with MCI and dementia groups (Table 5).

Volume similarity scores also highlighted a tendency towards 
volume over-estimation in the OBHC dataset. e2dhipseg 
(0.62 ± 0.21) demonstrated the largest degree of volume over-
estimation, followed by FreeSurfer (0.45 ± 0.16), SynthSeg 
(0.45 ± 0.21) and FastSurfer (0.44 ± 0.14). Hippodeep (0.32 ± 0.12) 
and FreeSurfer-Subfields (0.32 ± 0.14) demonstrated similar 
and relatively consistent levels of over-segmentation, followed 
by FIRST (0.23 ± 0.17). HippUnfold demonstrated a relatively 
tight distribution and a volume similarity score close to zero 
(−0.01 ± 0.14). There was significant variability in the volume 
similarity scores for both Hippmapper (−0.09 ± 0.32) and HSF 
(0.38 ± 0.38), suggesting that both under- and over-segmentation 

were present within the dataset, consistent with the variability 
in Dice scores.

3.3.3   |   Error Maps

Figure  6 illustrates the systematic false positives and neg-
atives for each segmentation method in the OBHC dataset. 
Like in ADNI HarP and MNI-HISUB25, most segmentation 
methods demonstrated systematic over-segmentation, par-
ticularly in the anterior hippocampal region (Figure  6A,B). 
Hippmapper and HippUnfold exhibit the fewest consistently 
located false positives but showed a larger number of false 
negatives relative to other methods (Figure 6C). In line with 
its low Dice value, e2dhipseg exhibits a high number of con-
sistently located false positives and negatives throughout 
the entire structure, indicating both over-segmentation and 
under-segmentation (Figure 6C). Consistent with the positive 
volume similarity values, FreeSurfer, SynthSeg, FastSurfer, 
FIRST and Hippodeep all demonstrate a similar level of sys-
tematic over-segmentation, predominantly in anterior regions 
(Figure 4A,B).

3.4   |   Sensitivity to Diagnosis Groups

As assessing volumetric changes of the hippocampus is an im-
portant target in clinical contexts, we also sought to determine 

FIGURE 3    |    (A) Dice coefficients, (B) mean 95% Hausdorff distance and (C) volume similarity for automatic segmentation methods compared 
with manual hippocampal masks from the MNI-HISUB25 dataset. (D) Correlations between manually segmented and automatically segmented vol-
umes for each segmentation method, averaged over hemispheres.

 10970193, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70200 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [29/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



11 of 20

T
A

B
L

E
 4

    
|    

M
ea

n 
vo

lu
m

e,
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

s,
 m

ea
n 

D
ic

e 
co

ef
fic

ie
nt

 a
nd

 m
ea

n 
95

%
 H

au
sd

or
ff 

di
st

an
ce

 a
cr

os
s h

em
is

ph
er

e 
fo

r t
he

 M
N

I-
H

IS
U

B2
5 

da
ta

se
t.

Fr
ee

Su
rf

er
Sy

nt
h

Se
g

Fa
st

Su
rf

er
FI

R
ST

e2
dh

ip
se

g
H

ip
pm

ap
pe

r
H

ip
po

de
ep

Fr
ee

Su
rf

er
-S

ub
fi

el
ds

H
ip

pU
n

fo
ld

Le
ft 

he
m

is
ph

er
e 

vo
lu

m
e 

(m
m

3 )

C
N

50
00

 (4
75

)
57

09
 (2

39
)

57
01

 (2
93

)
54

01
 (3

68
)

25
90

 (7
47

)
43

31
 (2

63
)

43
54

 (2
39

)
46

16
 (3

91
)

37
67

 (1
99

)

R
ig

ht
 h

em
is

ph
er

e 
vo

lu
m

e 
(m

m
3 )

C
N

51
44

 (5
33

)
58

16
 (3

10
)

57
45

 (3
33

)
55

22
 (4

14
)

28
46

 (6
25

)
44

43
 (2

71
)

44
18

 (2
54

)
47

08
 (3

70
)

38
20

 (2
35

)

Le
ft 

he
m

is
ph

er
e 

co
rr

el
at

io
n 

w
ith

 m
an

ua
l v

ol
um

e 
(r)

C
N

0.
48

0.
80

0.
81

0.
43

−
0.

09
0.

74
0.

79
0.

34
0.

80

R
ig

ht
 h

em
is

ph
er

e 
co

rr
el

at
io

n 
w

ith
 m

an
ua

l v
ol

um
e 

(r)

C
N

0.
61

0.
80

0.
77

0.
61

−
0.

11
0.

84
0.

76
0.

55
0.

84

Le
ft 

he
m

is
ph

er
e 

vo
lu

m
e 

si
m

ila
ri

ty

C
N

0.
08

 (0
.0

9)
0.

22
 (0

.0
5)

0.
22

 (0
.0

5)
0.

17
 (0

.0
8)

−
0.

58
 (0

.3
0)

−
0.

05
 (0

.0
5)

−
0.

05
 (0

.0
5)

0.
00

 (0
.1

0)
−

0.
19

 (0
.0

5)

R
ig

ht
 h

em
is

ph
er

e 
vo

lu
m

e 
si

m
ila

ri
ty

C
N

0.
09

 (0
.0

8)
0.

22
 (0

.0
5)

0.
21

 (0
.0

5)
0.

17
 (0

.0
7)

−
0.

50
 (0

.2
4)

−
0.

05
 (0

.0
4)

−
0.

05
 (0

.0
5)

0.
00

 (0
.0

7)
−

0.
20

 (0
.0

4)

Le
ft 

he
m

is
ph

er
e 

D
ic

e 
co

ef
fic

ie
nt

C
N

0.
76

 (0
.0

3)
0.

84
 (0

.0
2)

0.
79

 (0
.0

2)
0.

83
 (0

.0
2)

0.
66

 (0
.1

3)
0.

86
 (0

.0
2)

0.
85

 (0
.0

2)
0.

78
 (0

.0
3)

0.
80

 (0
.0

2)

R
ig

ht
 h

em
is

ph
er

e 
D

ic
e 

co
ef

fic
ie

nt

C
N

0.
76

 (0
.0

3)
0.

84
 (0

.0
2)

0.
79

 (0
.0

3)
0.

83
 (0

.0
2)

0.
70

 (0
.1

1)
0.

86
 (0

.0
2)

0.
85

 (0
.0

2)
0.

79
 (0

.0
3)

0.
78

 (0
.0

3)

Le
ft 

he
m

is
ph

er
e 

95
%

 H
au

sd
or

ff 
di

st
an

ce
 (m

m
)

C
N

2.
04

 (0
.1

7)
1.

68
 (0

.2
8)

2.
05

 (0
.2

2)
1.

87
 (0

.3
3)

6.
22

 (7
.8

5)
1.

44
 (0

.1
4)

1.
87

 (0
.3

3)
1.

53
 (0

.1
8)

1.
85

 (0
.2

2)

R
ig

ht
 h

em
is

ph
er

e 
95

%
 H

au
sd

or
ff 

di
st

an
ce

 (m
m

)

C
N

1.
95

 (0
.3

1)
1.

66
 (0

.2
9)

1.
96

 (0
.2

1)
1.

78
 (0

.2
5)

3.
66

 (3
.7

0)
1.

37
 (0

.1
9)

1.
78

 (0
.2

5)
1.

51
 (0

.3
1)

1.
90

 (0
.2

7)

N
ot

e:
 D

at
a 

ar
e 

di
sp

la
ye

d 
as

 M
ea

n 
(S

D
), 

ex
ce

pt
 fo

r w
he

n 
pr

es
en

tin
g 

Pe
ar

so
n 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
s.

 10970193, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70200 by N
ational H

ealth A
nd M

edical R
esearch C

ouncil, W
iley O

nline L
ibrary on [29/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 20 Human Brain Mapping, 2025

whether each segmentation method could detect changes in hip-
pocampal volume between diagnostic groups in the ADNI HarP 
and OBHC datasets.

For the ADNI HarP dataset, a linear mixed effects model demon-
strated a significant main effect of age (F1,126 = 19.7, p < 0.001), 
sex (F3,432 = 629.9, p < 0.001), group (F2,126 = 36.8, p < 0.001), seg-
mentation method (F10,2695 = 1257.7, p < 0.001) and a group by 
segmentation method interaction (F20,2695 = 7.32, p < 0.001).

As a point of comparison, manual segmentation demon-
strated that subjects with AD had smaller hippocampal vol-
umes than controls (p < 0.001) and MCI subjects (p = 0.03), and 
MCI subjects had smaller hippocampal volumes than controls 
(p < 0.001). All automatic segmentation methods demonstrated 
smaller volumes in subjects diagnosed with AD compared with 
controls (all p < 0.01). Likewise, all segmentation methods ex-
cept for HippUnfold (p = 0.12) and HSF (p = 0.92) demonstrated 
lower volumes in subjects diagnosed as AD compared with MCI 
(all p < 0.03). Finally, all segmentation methods demonstrated 
smaller hippocampal volumes in MCI subjects compared to con-
trols (all p < 0.01) (Figure 7A).

For the OBHC dataset, the model demonstrated significant 
main effects of age (F1,24 = 7.48, p = 0.01), sex (F1,24 = 4.74, 
p = 0.04), group (F2,24 = 5.00, p = 0.02), segmentation method 
(F10,567 = 69.04, p < 0.001), but no significant group by segmen-
tation method interaction (F20,567 = 1.15, p = 0.29). Though the 
group by segmentation method interaction was not statistically 
significant, comparisons between groups for each segmentation 
method were explored. For manual segmentation, subjects with 
a dementia diagnosis had smaller hippocampal volumes than 

those with no dementia-related diagnosis (p = 0.04). However, 
no significant differences were found in hippocampal volume 
between subjects with NDRD and MCI (p = 0.16), nor between 
subjects with MCI and dementia patients (p = 0.78). All seg-
mentation methods (all p < 0.04) except SynthSeg (p = 0.38), 
e2dhipseg (p = 0.33) and HippUnfold (p = 0.13) found smaller 
hippocampal volumes for subjects with a dementia diagnosis 
compared with NDRD. Only FIRST (p = 0.04), Hippmapper 
(p = 0.02) and Hippodeep (p = 0.04) demonstrated a differ-
ence in volume between NDRD and subjects with MCI, while 
no segmentation methods detected a difference in volume be-
tween subjects with a dementia or MCI diagnosis (all p > 0.36) 
(Figure 7B).

3.5   |   Performance Summary

Table 6 summarises the performance of the best and worst seg-
mentation methods for each dataset, evaluated across the met-
rics of Dice, HD95, volume similarity, volume correlation and 
total voxel error (encompassing both false positives and false 
negatives), averaged over hemispheres. The best-performing 
methods for each diagnosis group within a dataset were deter-
mined by the highest Dice score, lowest HD95, volume similar-
ity closest to zero, volume correlation closest to 1, and the fewest 
total voxel errors.

4   |   Discussion

Here, we investigated the performance of 10 publicly available 
tools that segment the hippocampus on three datasets with 

FIGURE 4    |    (A) False positive (FP) (red-yellow) and false negative (FN) (blues) heat maps for each segmentation method projected onto the stan-
dard MNI152 T1 template image. The colour bar represents the proportion of times a given voxel was incorrectly labelled in comparison to the man-
ually segmented hippocampal mask from the MNI-HISUB25 dataset. (B) Number of false positive and (C) false negative voxels in the anterior and 
posterior hippocampus regions for each segmentation method (averaged over hemispheres).
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manual labels: ADNI HarP, MNI-HISUB25 and a real-world 
memory clinic dataset from the OBHC. Briefly, we found that 
most segmentation methods: (1) performed consistently and ac-
curately on the two publicly available datasets but were more 
prone to error and variability on an unseen clinical dataset, 
(2) are likely to overestimate volumes and systematically over-
segment the hippocampus, particularly at the anterior hippo-
campus border, and (3) can delineate between healthy controls, 
subjects with a diagnosis of MCI and subjects with a dementia 
diagnosis based on hippocampal volume.

In evaluating the performance of each of the segmentation 
methods, we were interested in both accuracy relative to manual 
labels and reliability, and particularly interested in performance 
on the OBHC dataset. This dataset presents a more challeng-
ing test of generalisation due to its different demographic and 
clinical characteristics, which was reflected in the generally 
poorer performance observed across all segmentation meth-
ods, compared to that in ADNI HarP and MNI-HISUB25. Being 
an unselected sample of memory clinic patients, the average 
age is older than ADNI and most dementia research datasets, 
and there is a higher amount of atrophy and vascular pathol-
ogy (Griffanti et al. 2022). Moreover, due to minimal exclusion 
criteria (related to MR-safety or being too frail to travel to the 
assessment centre—see O'Donoghue et  al.  2023 for details), it 
is a more representative sample of real-world patients, but also 
likely more heterogeneous. If the goal is to make automated 

measures available in clinical practice, it is important to eval-
uate the performance of tools in such clinical samples. In this 
dataset, SynthSeg, FIRST, e2dhipseg, Hippmapper, HippUnfold 
and HSF exhibited lower mean Dice coefficients and worse 
tail distributions than in the other datasets, suggesting higher 
segmentation failure rates. However, Hippodeep, FastSurfer, 
FreeSurfer-Subfields and HippUnfold performed relatively well 
on the OBHC data, with strong correlations with manual vol-
umes and better accuracy and consistency than other methods 
as measured by Dice distributions, potentially suggesting better 
performance in data collected in real-world clinical settings and 
populations beyond typical research samples.

Despite the poorer performance on unseen data for deep-
learning-based methods that were trained on manual labels, 
such as e2hipseg and HSF, not all deep-learning methods ex-
hibited inconsistency across datasets. Hippodeep demonstrated 
strong performance across all segmentation metrics in all eval-
uated datasets, with high Dice values, tightly distributed Dice 
and HD measures, strong volume similarities and robust cor-
relations with manual volumes. Likewise, although slightly 
underperforming compared with other methods based on mean 
Dice values, FastSurfer consistently demonstrated relatively 
tight Dice distributions and strong correlations with manual vol-
umes across all datasets. The consistent performance of these 
methods can be attributed to training methods that allowed 
for larger and diverse datasets to be used in the development 

FIGURE 5    |    (A) Dice coefficients, (B) mean 95% Hausdorff distance for automatic segmentation methods and (C) volume similarity scores 
compared with manual hippocampal masks from the Oxford Brain Health Clinic dataset. (D) Correlations between manually segmented and 
automatically segmented volumes for each segmentation method, averaged over diagnostic groups and hemispheres.  Note: FreeSurfer recon-all failed 
to run on two subjects.
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of these tools. FastSurfer implements a CNN that is trained on 
labels derived from FreeSurfer cortical and subcortical segmen-
tation (Henschel et al. 2020), while Hippodeep was trained in 
part on hippocampal labels derived from FreeSurfer (Thyreau 
et al. 2018). By reducing the reliance on manually labelled data, 
both methods accessed larger training datasets that spanned dif-
ferent ages, disease groups, scanner types, scanner vendors, and 
field strengths, which likely explains the better performance on 
unseen data here.

In comparison, traditional methods like FreeSurfer and FIRST, 
while slightly less effective than deep learning-based methods 
trained on manual labels in the ADNI and MNI-HISUB25 data-
sets, demonstrate consistent performance across all datasets 
when considering mean Dice values and distribution, mean 
95th percentile HD, and correlation with manual volumes, de-
spite a tendency to over-estimate volumes. Although FIRST and 
FreeSurfer showed relatively weaker correlations with manual 
volumes in the MNI-HISUB25 dataset, and FIRST exhibited 
a large Dice distribution tail in the OBHC data, their overall 
performance across datasets was generally moderate to strong, 
although FIRST outperformed FreeSurfer in both ADNI HarP 
and MNI-HISUB25. The consistency of traditional segmentation 
methods compared with deep learning-based methods trained 
on manual labels highlights that a lack of manual label sources 
is a notable limitation of the hippocampal segmentation field. 
The shortage of manual labels that span the entire chronological 
age range and pathological conditions results in new methods 
being repeatedly trained on similar data, limiting generalisabil-
ity even when the unseen data matches the demographic charac-
teristics of common training datasets, such as ADNI HarP.

Another finding of this study is the consistent over-segmentation 
in the anterior hippocampal region among most segmentation 
methods, evident through volume similarity values and the num-
ber of false positive and false negative voxels, unless they perform 

exceptionally poorly (e.g., e2dhipseg on MNI-HISUB25). Even 
the most reliably performing methods, such as Hippodeep, ex-
hibit systematic over-segmentation at the anterior hippocampus 
border and a tendency towards over-segmentation, indicating 
challenges in delineating the boundaries between the hippo-
campus and amygdala. This difficulty is expected given the lack 
of visible landmarks to reliably demarcate regions within the 
medial temporal lobe, particularly between the borders of the 
hippocampus and amygdala, CA subregions, subiculum and en-
torhinal cortex (Amunts et al. 2005). Additionally, consistently 
located false negatives, although less frequent, were seen at the 
medial and posterior borders of the hippocampus. This region 
is challenging to segment, as many manual segmentation pro-
tocols rely on the appearance of non-hippocampal structures to 
assist in defining hippocampal borders (Konrad et al. 2009). As 
cytoarchitecture is not visible in MR images, it is unsurprising 
that accurately and reliably segmenting the hippocampus both 
manually and automatically remains an ongoing challenge in 
the neuroimaging field.

A caveat to consider is that all three datasets in this study were 
labelled using different manual labelling methods, potentially 
influencing the comparative results across datasets and seg-
mentation methods (Frisoni and Jack 2011). For example, while 
the ADNI HarP data were labelled using the extensively tested 
HarP segmentation protocol (Frisoni and Jack 2015), the MNI-
HISUB25 dataset was labelled with the intention to capture 
three broad regions (subiculum, CA1-3 and CA4-DG) (Kulaga-
Yoskovitz et  al.  2015). The automatic segmentation methods 
that were not trained on subfield data showed larger segmented 
volumes and weak correlations between manual and automatic 
volumes in the MNI-HISUB25 dataset despite the sample only 
containing healthy controls, which may indicate differences re-
sulting from manual labelling methods. However, the consistent 
pattern of false negatives and false positives observed across 
segmentation methods and datasets may indicate that regardless 

FIGURE 6    |    (A) False positive (FP) (red-yellow) and false negative (FN) (blues) heat maps for each segmentation method projected onto the 
standard MNI152 T1 template image. The colour bar represents the proportion of times, a given voxel was incorrectly labelled in comparison to the 
manually segmented hippocampal mask from the Oxford Brain Health Clinic dataset. (B) Number of false positive and (C) false negative voxels in 
the anterior and posterior hippocampus regions for each segmentation method (averaged over hemispheres).
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of manual labelling protocol, automatic segmentation methods 
systematically fail in similar ways. Finally, it is worth consider-
ing that although manual labels are considered the ‘gold stan-
dard’ for segmentation, there is inherent subjectivity introduced 
during this process. For example, identifying landmarks and ap-
plying thresholds in the presence of partial volume effects, com-
bined with differences in interpretations of labelling protocols 
may introduce variability that should be considered when using 
manual labels as a ground truth.

Selecting the most appropriate hippocampal segmentation 
method for a given analysis should be guided by research aims 
and available resources for processing. Based on the data pre-
sented, Hippodeep emerges as particularly attractive for solely 
segmenting the hippocampus, offering high similarity to 
manual masks based on Dice, particularly in AD or dementia 
groups, strong correlations with manual volumes, the ability 
to detect group differences based on volume, and efficient pro-
cessing times (i.e., in our tests, processing a single participant in 

under 10 s on a CPU). If whole brain segmentation is of interest, 
FastSurfer presents a viable, computationally inexpensive alter-
native to FreeSurfer, demonstrating improved performance over 
FreeSurfer in all datasets. Although FIRST achieved higher 
mean Dice values than FastSurfer across all datasets, FastSurfer 
exhibited greater reliability with tighter Dice distributions and 
stronger correlations with manual volumes, despite its tendency 
for over-segmentation and false positives. However, both meth-
ods are appropriate options for capturing differences in diagnos-
tic groups.

Alternatively, if hippocampal subfields are of interest, from 
the methods tested here, the combination of FreeSurfer and 
FreeSurfer-Subfields is a reliable option, followed closely by 
HippUnfold, which also provides additional output such as 
surface data and Laplacian fields. However, both methods are 
computationally intensive, have larger output sizes and may 
require high-performance computing resources for large data-
sets, which may not be an option in all use cases. For studies 

FIGURE 7    |    Mean volumes for each segmentation method across diagnostic groups in the (A) ADNI HarP dataset and (B) Oxford Brain Health 
Clinic dataset. ***p < 0.001, **p < 0.01, *p < 0.05.
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investigating group differences in hippocampal volume, most of 
the segmentation methods evaluated in this study are suitable, 
even for subtle volume changes such as those between MCI and 
AD or MCI and control groups. Therefore, the choice of method 
should also consider other factors such as computational re-
sources and compatibility with study objectives.

One limitation of this study is the relatively small sample size 
of the OBHC dataset, with a very small number of participants 
without a dementia-related diagnosis. However, this limita-
tion is not unique to our study but rather reflects the broader 
challenge in the field of manual label availability. Moreover, 
the NDRD group in the OBHC dataset cannot be considered a 
healthy control group in a similar way as other datasets, as all 
OBHC participants were referred for a memory clinic appoint-
ment. We used as our third diagnostic group those patients who 
did not receive a diagnosis of MCI or dementia, but they may 
have received other mental health diagnoses or no diagnosis. 
However, this group is more typical of a general clinical popu-
lation. Another limitation is that we did not aim to optimise the 
automatic segmentation methods evaluated here; instead, we 
used default or recommended settings in all cases. While meth-
ods with adjustable parameters or additional input information 
(e.g., T2w or brain-extracted images) may show improved per-
formance when these are provided, it was beyond the scope of 
this study to explore the optimisation of each method. Finally, 
it was also beyond the scope of this study to evaluate the perfor-
mance of automatic segmentation methods longitudinally, but 
this is a natural extension of this work that we will focus on in 
the future.

In this study, we assessed the performance of 10 automatic hip-
pocampal segmentation methods across three datasets with 
manual labels. While it is challenging to provide a single, defini-
tive recommendation for the most valid method(s) based on this 
investigation, our findings underscore the ongoing challenge of 
hippocampal segmentation from MR images within the neuro-
imaging field. As the field moves towards deep-learning-based 
segmentation, future efforts should prioritise increasing the 
availability of publicly accessible manual labels covering a wide 
range of ages and pathological conditions. This would facilitate 
adequate training of segmentation methods and enhance their 
generalisability, both cross-sectionally and longitudinally.
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