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ABSTRACT
The enteric nervous system (ENS) consists of an extensive
network of neurons and glial cells embedded within the wall of the
gastrointestinal (GI) tract. Alterations in neuronal distribution and
function are strongly associated with GI dysfunction. Current methods
for assessing neuronal distribution suffer from undersampling, partly
due to challenges associated with imaging and analyzing large tissue
areas, and operator bias due to manual analysis. We present the
Gut Analysis Toolbox (GAT), an image analysis tool designed for
characterization of enteric neurons and their neurochemical coding
using two-dimensional images of GI wholemount preparations. GAT
is developed in Fiji, has a user-friendly interface, and offers rapid and

accurate segmentation via custom deep learning (DL)-based cell
segmentation models developed using StarDist, as well as a ganglia
segmentation model in deepImageJ. We apply proximal neighbor-
based spatial analysis to reveal differences in cellular distribution
across gut regions using a public dataset. In summary, GAT provides
an easy-to-use toolbox to streamline routine image analysis tasks in
ENS research. GAT enhances throughput, allowing rapid unbiased
analysis of larger tissue areas, multiple neuronal markers and
numerous samples.
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INTRODUCTION
The enteric nervous system (ENS) is a network of neurons and
glial cells located within the wall of the gastrointestinal (GI) tract.
The ENS extends along the esophagus to the rectum and is estimated
to comprise ∼168 million neurons, which is comparable to the
number of neurons in the spinal cords of humans, mice and guinea
pigs (Michel et al., 2022). It is critical for the regulation of secretion,
absorption and immune function, and for coordination of gut motility
(Furness, 2012). The absence or loss of enteric neurons results in
GI dysfunction, as evidenced in enteric neuropathies such as
Hirschsprung disease, achalasia and Chagas disease (Burns et al.,
2016; Heuckeroth, 2018; Schäppi et al., 2013; Vaezi et al., 2016).
Alterations to specific enteric neuron populations that express distinct
combinations of neuropeptides, enzymes or neurochemicals are also
evident in other diseases that impact gut function. These include
inflammatory bowel disease (Brierley and Linden, 2014), diabetes
(Chandrasekharan et al., 2011; Demedts et al., 2013) andAlzheimer’s
disease (Niesler et al., 2021; Semar et al., 2013; Van Ginneken et al.,
2011). Researchers use enteric neuronal counts as a key metric to
describe any neurochemical changes in these diseases. Typically, this
is achieved by manually counting cells in small intestinal segments
or, more recently, via semi-automated methods (Cairns et al., 2021;
Cavin et al., 2023; Kapur, 2013; Kobayashi et al., 2021; Nestor-
Kalinoski et al., 2022; Parker et al., 2022; Schäppi et al., 2013). These
cell counts from localized areas within a specimen are then used to
make inferences about broader changes to the bowel region being
studied and any changes associated with disease. However, the
estimated number of cells counted can be affected by: (1) the tissue
preparation examined, as cell density estimates using tissue sections
can be prone to sampling and operator bias compared to the use of
wholemount preparations (Kapur, 2013; Swaminathan and Kapur,
2010); (2) the age of the animal (Gamage et al., 2013); (3) the tissue
region examined, due to regional differences in the distribution of
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ENS circuitry (Hamnett et al., 2022b; Nestor-Kalinoski et al., 2022);
(4) the number of tissue specimens and locations sampled
(Nestor-Kalinoski et al., 2022); and (5) operator bias during the
tissue preparation, sampling or manual counting steps (Kapur, 2013;
Schäppi et al., 2013).
The major limitation of current approaches for neuronal

quantification in large tissue specimens is the use of manual cell
counting. This process is slow, labor intensive and prone to inter-
observer variability. In our opinion, the continued use of manual
counting processes is largely due to the lack of easy-to-use, ENS-
specific image analysis software.
The need for image analysis software in neurogastroenterology

is evidenced by the increasing number of image analysis
workflows and tools that have become available in recent years,
such as COUNTEN and the use of machine learning approaches in
Fiji (Cairns et al., 2021; Kobayashi et al., 2021). However, to
use these workflows computational expertise is required, and the
software parameters need to be optimized for new datasets.
COUNTEN is highly dependent on images of robust and
homogeneous staining, which is not always achievable for all
intestinal preparations (Kobayashi et al., 2021). The image quality
affects the ability of image analysis techniques to accurately detect
cells. This could be due to multiple factors, such as (1) poor quality
of dissection of intestinal layers, which can affect antibody
penetration and labeling of the cells in the ENS; (2) specificity of
the antibodies, markers and fluorophores used during staining; and
(3) variations in sample preparation. Furthermore, image acquisition
specifications, including the bit depth and dynamic range, can
significantly affect downstream image analysis. All these factors can
pose challenges to the widespread adoption of such software,
necessitating the development of customized analytical workflows
for each use case.

We have developed the Gut Analysis Toolbox (GAT) for the Fiji
distribution of ImageJ (Schindelin et al., 2012). GAT can be used to
analyze and quantify cells within the ENS. GAT uses deep learning
(DL)-based cell segmentation models developed with StarDist
(Schmidt et al., 2018) for segmenting enteric neurons and neuronal
subtypes. A pre-trained TensorFlow model was used to segment
ganglia, and thismodel is accessible in Fiji using deepImageJ (Gómez-
de-Mariscal et al., 2021). These models are integrated into GAT for
rapid and reproducible quantification of key metrics such as total
neuronal counts, neurochemical marker distribution and cell number
per ganglion (Fig. 1). The DL models were trained on manually
annotated data from mouse, rat and human colon wholemount
preparations to ensure that they can effectively segment a wide variety
of images (Chen et al., 2023; DiCello et al., 2020; Graham et al.,
2020b; Nestor-Kalinoski et al., 2022). The training images were
acquired using confocal and widefield microscopes from different
research groups. Proximal neighbor analysis was used to characterize
neuronal distribution using CLIJ (Haase et al., 2020a preprint, 2020b).
Comprehensive installation and usage instructions, along with sample
data and tutorial videos, can be found in the documentation available
at https://gut-analysis-toolbox.gitbook.io/docs/. The GAT workflow is
also usable fromwithin the QuPath software to enable analysis of large
two-dimensional (2D) images (Bankhead et al., 2017). The enhanced
throughput of GAT facilitates sampling and analysis of larger tissue
areas, thus minimizing potential sampling errors and biases.

RESULTS
Development and benchmarking of the DL models
To develop effective DL models, it is essential to have diverse
datasets that encompass the inherent variability in images from
various sources. To meet this need, we collected ENS images from
four different research laboratories, which were acquired as part of

Fig. 1. Overview of the GAT workflow. Top: GAT can segment neurons, neurons expressing neurochemical markers, and ganglia in fluorescently labeled
2D images using pre-trained DL models. GAT allows manual verification of the segmentation, followed by automated quantification of cell counts. The cellular
distribution can be subsequently quantified via proximal neighbor analysis. Bottom: large 2D images can be analyzed in QuPath using the GAT DL models.
Extensive documentation and videos on how to use GAT are available at https://gut-analysis-toolbox.gitbook.io/docs/. Myenteric wholemount images were
either acquired as part of the study reported by DiCello et al. (2020) (top) or are reproduced from Kalinoski and Howard (2021) (bottom; reproduced under the
terms of a CDLA-Permissive-1.0 license). Scale bar: 30 µm. Created in BioRender (https://BioRender.com/q94f538).
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previously published studies (Chen et al., 2023; DiCello et al., 2020;
McQuade et al., 2021; Poon et al., 2022), and from two publicly
available datasets (Graham et al., 2020a; Kalinoski and Howard,
2021). The collected images had been captured using a variety of
microscopes, and the labeled tissues originated from different animal
species, including mice, humans and rats, as detailed in Table S1. The
details for images with pan-neuronal marker Hu (herein referring to
HuC and/or HuD, also known as ELAVL3 and ELAVL4, respectively)
are summarized in Table S1. For the enteric neuron subtype model
(Table S2), nine neurochemical markers were used, with 42% of the
images representing neuronal NOS (nNOS, also known as NOS1).
The ganglia model was trained using various neuronal markers in
combination with Hu, as listed in Table S3. The effects of inadequate
sampling on enteric neuron counts were also tested (Fig. S1).
StarDist (Schmidt et al., 2018) was used to train DL models for

segmenting all enteric neurons (Fig. S2A,B). A UNet architecturewas
utilized for the ganglia model (Ronneberger et al., 2015). The training
and evaluation of the models were conducted using ZeroCostDL4Mic
(von Chamier et al., 2021). Further details on the curation of training
data and software versions used can be found in the Materials and
Methods section. The ZeroCostDL4Mic Google Colab notebooks
used for training and quality control are available online (Sorensen
et al., 2022; https://doi.org/10.5281/zenodo.10460434).
The performance of the ‘enteric neuron model’ was evaluated on

a test dataset and compared to a widely used cell segmentation
software, Cellpose (v0.7) (Stringer et al., 2021). Fig. 2A presents the
evaluation of object detection accuracy (F1 score) and shape
alignment accuracy (intersection over union, IoU) (Caicedo et al.,
2019). A higher F1 score at a higher IoU indicates better
segmentation performance (Fig. 2A). The Hu segmentation results
showed comparable performance between the StarDist and Cellpose
(cyto2) models. However, when examining the neuronal subtype
models, a rightward shift in F1 scores of the StarDist model indicates
a modest improvement when compared to the Cellpose cyto2 model
(Fig. 2A). As StarDist approximates the shape of a cell using star-
convex polygons, the predicted objects have smoother outlines
relative to the original cell shape (Fig. 2B; Fig. S2C,D).
The primary goal of GAT is to estimate cell counts, and this

metric is not necessarily captured by the F1 score, which evaluates
segmentation quality. The StarDist models approximate cell shape,
and this leads to smoother outlines, meaning that the final
segmentation result will slightly differ from the ground truth,
leading to reduced F1 scores (Fig. S2C,D). The ‘percentage cell
count error’, which is defined as:

ð predicted cell number � ground truth cell numberÞ
ground truth cell number

� 100;

is a more direct measure of the accuracy of these DL models for
evaluating cell count, compared to the F1 score. Importantly, this
approach allows for an objective comparison with COUNTEN using
the default settings recommended by the authors (Kobayashi et al.,
2021). In this context, a lower percentage error indicates enhanced
performance. The percentage cell count error was estimated using the
same test datasets as those used for the F1 score. The StarDist neuron
model had significantly better accuracy, with only 6.09±4.8% error
in cell counts compared to 14.6±12.1% for Cellpose (25 images,
3830 neurons, mean±s.d.; one-way ANOVA with Tukey’s multiple
comparison test, P=0.0064). The percentage error for COUNTEN
(Fig. 2C) was also higher than that for GAT at 13.54±10% (one-way
ANOVA with Tukey’s multiple comparison test, P=0.0195). When
testing the accuracy of segmenting enteric neurons expressing the

markers calbindin (Calb), calretinin (Calret), nNOS and neurofilament
M (NFM, also known as NEFM), the StarDist model demonstrated a
similar cell count percentage error (13.8±13.1%) compared to that of
Cellpose (29.5±29.3%, mean±s.d.; 359 cells, 15 images; two-tailed
unpaired t-test, P=0.07) (Fig. 2D). Notably, being a generalist cell
segmentation algorithm, Cellpose still had high IoU scores on the
enteric neuron segmentation task, with higher cell count accuracies for
2D confocal images (Fig. 2C). The Cellpose predictions had higher
cell splitting and merging errors (Wolny et al., 2020) compared to the
StarDist predictions (Fig. S2E–G). Fine-tuning the settings or training
the Cellpose models on these enteric neuron datasets will most likely
produce a better performing Cellpose enteric neuronal model
(Pachitariu and Stringer, 2022). However, this was not explored due
to the lack of a standalone Fiji plugin for Cellpose. The percentage
error was also calculated for the VersatileFluo model provided by
StarDist and was found to be significantly higher than that for the
GAT StarDist model (Fig. S2I; 25 images, 3830 neurons; two-tailed
unpaired t-test, P=0.000015).

Semi-automation usingGAT increased analysis throughput.Manual
segmentation of 1309 enteric neurons took 183 min in total, across
three researchers, whereas segmentation using GAT and the enteric
neuron DL model took only 10.4 min by a single person (Fig. 2E).

To enable segmentation of ganglia using GAT, a 2D UNet model
was trained using ZeroCostDL4Mic (von Chamier et al., 2021) on
images of Hu labeling in combination with a second marker for
neuronal or glial fibers (Table S3). The ganglia model was
subsequently exported in a format compatible for use within the Fiji
deepImageJ plugin (Gómez-de-Mariscal et al., 2021). A limitation is
that the postprocessing threshold value applied to the probability map
output from deepImageJ can impact the accuracy of the ganglia
outlines. To evaluate this, an arbitrary threshold of 0.8 was compared
with the default deepImageJ optimized threshold. The GAT ganglia
model performed significantly better than COUNTEN (Fig. 2F–H)
when measuring the IoU at an optimized threshold (IoU of 0.78±0.09
for GAT versus 0.64±0.16 for COUNTEN; mean±s.d.; one-way
ANOVAwith Tukey’s multiple comparison test, P=0.01), which was
in contrast to performance using the fixed threshold (IoU of 0.72±0.1;
one-way ANOVA with Tukey’s multiple comparison test, P=0.23).
Although there was not a significant difference between IoU for GAT
at an optimized threshold versus that at the fixed threshold (one-way
ANOVA with Tukey’s multiple comparison test, P=0.39), the
variability in prediction was lower using the optimized threshold.
Not all laboratories use markers to label the ganglionic border. In this
instance, the neuronal outline can be expanded by a user-specified
distance to approximate ganglionic area.

Proximal neighbor analysis in GAT can objectively detect
regional differences in cellular distribution
An accurate estimation of neuronal densities in gut wholemount
preparations can be impacted by the degree of stretch applied during
tissue processing (Fig. S1A). Nonetheless, the stretch applied does not
alter the cellular architecture and spatial relationships between cells.
Any change in cell density results in a proportional change in the
number of neighbors around each cell. As the spatial relationship is
unaffected by tissue stretch, the number of proximal neighbors (PNs)
is a robust measure for characterizing cellular distribution. To apply
PNmeasurements in GAT, a threshold distance value was determined
to define the distance within which cells were considered neighbors.
The edge-to-edge distances between the segmented neurons in the
ganglia were measured in images of the myenteric wholemount
preparations of the mouse colon (Tables S1 and S2). To define a
threshold distance value for considering a cell a PN, the average PN
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Fig. 2. GAT segments neurons and ganglia with high accuracy. (A) Segmentation results for Hu-labeled enteric neurons (mouse, rat and human) obtained
using the GAT StarDist model (Table S1) and Cellpose (cyto2 model) have comparable F1 scores (top left). However, the GAT StarDist model for other
neurochemical markers (Table S2) has a better F1 score at various IoU thresholds (top right). Bottom: representative images of ground truth cells (yellow) and
predicted cells (cyan) are overlaid to visualize how more accurate predictions are retained at higher IoU thresholds (white indicates overlap between the ground truth
and predicted images). Generally, the more predictions that are retained at higher IoU thresholds, the better the model (some cells in the prediction image were
manually edited to illustrate the changes at higher IoU thresholds). Data shown are from test datasets with 3830 neurons, 25 images for the enteric neuron model,
and with 359 neurons, 15 images for the enteric neuron subtype model. (B) The StarDist model can be used to detect bright cells, dim cells and overlapping cells.
The representative images of GAT StarDist model segmentation depict mouse enteric neurons that were either labeled with Hu and segmented using the enteric
neuron model (top), or labeled with nNOS and segmented using the enteric neuron subtype model (bottom). Green outlines highlight GAT-detected cells. The
orange outline shows a false-positive cell, and the orange arrowheads indicate a missed cell. Scale bars: 20 µm. A pixel size of 0.5 µm/pixel was used for
segmentation. (C) When used to count enteric neurons in the same test dataset as panel A, the lowest percentage of error was achieved using the GAT StarDist
model, compared to Cellpose models and COUNTEN (mean±s.d.; 25 images, 3830 cells). *P<0.05; **P<0.01 (one-way ANOVAwith Tukey’s multiple comparison
test). (D) The StarDist enteric neuron subtype model produced a lower percentage error compared to Cellpose when used to count different enteric neurons from
the test dataset based on the neurochemical marker expressed (mean±s.d.; 15 images, 359 cells). ns, not significant (P=0.07; two-tailed unpaired t-test). (E) The
total time taken to segment 1309 mouse enteric neurons (8 images) was faster using GAT compared to manual segmentation. (F,G) A 2D UNet model was trained
to segment ganglia based on the presence of various markers (Table S3) that label the neuron or glial fibers. The representative images demonstrate prediction
and segmentation of ganglia in mouse tissue using Hu and GFAP. Scale bar: 30 µm. (H) When evaluated on a test image dataset (human, rat and mouse), the
ganglia segmentation model has a mean IoU of 0.72±0.17 when using a fixed threshold of 0.8, and 0.78±0.09 with a deepImageJ optimized threshold for each
image. COUNTEN has a lower IoU of 0.645±0.16 (mean±s.d.; 20 images). *P<0.01; ns, not significant (one-way ANOVA with Tukey’s multiple comparisons test).
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distance between neurons (edge-to-edge distance) in the ganglia
was calculated using the ‘Local Thickness’ plugin (Dougherty and
Kunzelmann, 2007) in Fiji (Fig. S3). For the myenteric wholemount
preparations of the mouse colon, this was determined to be
6.32±5.17 µm (n=3643 cells, 130 ganglia; mean±s.d.; N=11),
which was rounded up to 6.5 µm for use within GAT (Fig. S3C,D).
This value is customizable in GAT to account for differences in tissue
preparation or varying cell sizes across species. The neighbor count
map allowed the examination of any changes associated with
different distance values.
To evaluate the robustness of spatial analysis with uneven tissue

stretch, an image of the same region of a myenteric wholemount
preparation of Wnt1-cre:Rosa26-tdTomato mouse colon was
acquired under unstretched and stretched conditions. The neurons
were manually counted by identifying cells with relatively low
background intensities and large sizes (Fig. 3A). Stretch led to
∼55.3% increase in the tissue area examined (152,318 µm2

unstretched versus 245,652 µm2 stretched), total ganglionic area
(26,573 µm2 unstretched versus 44,844 µm2 stretched) and cell
densities in the ganglionic area (2696 neurons/mm2 unstretched
versus 1493 neurons/mm2 stretched; Fig. 3B). Using the PN analysis,
no differencewas found between the average PNs around each neuron
for stretched and unstretched tissue (2.76±1.25 stretched versus
2.98±1.21 unstretched; mean±s.d.; paired two-tailed Student’s t-test,
P=0.21; N=1). Importantly, the distribution of PNs for each cell was
similar for both stretched and unstretched tissue (Fig. 3C), showing
that GAT can capture the underlying cellular distribution even with
significant differences in tissue area.
Spatial analysis in GAT enables the quantification of cellular

distribution and can be used to evaluate differences across gut regions
or in different disease states. To illustrate this objectively, images
of the proximal colon (PC) and distal colon (DC) from a
published dataset were analyzed (Hamnett et al., 2022a,b). Others
have demonstrated that the PC has larger ganglia and greater neuronal
density in comparison to the DC (Li et al., 2019; Nestor-Kalinoski
et al., 2022). This was evaluated using GAT by quantifying the
number of ganglia and the number of neurons per ganglion. There
was a significantly larger number of ganglia in the DC compared
to that in the PC (160.7±14.5 for DC versus 77.5±21.6 for PC;
mean±s.d.; two-tailed unpaired t-test with Welch’s correction,
P=0.0008; n=4). However, the neuronal density per ganglion
was not different when comparing the means (20.7±30.3 for DC
versus 56.5±202.3 for PC; mean±s.d.; two-tailed unpaired t-test with
Welch’s correction, P=0.055; n=4). The neuronal count per ganglion
showed considerable variability, likely due to the difference in
ganglion size across each region, as reflected by the high s.d. values.
To account for this, the median values were calculated. This revealed
that the PC had a significantly lower number of neurons per ganglion,
compared to that in the DC (8.3±1.2 for DC versus 3.6±1.9 for PC;
median±s.d.; two-tailed unpaired t-test with Welch’s correction,
P=0.009; n=4). Neurons in the PC had greater number of neighbors
than those in the DC (Fig. 3D) (raw counts of 503.8±68.6 versus
874.8±161 for five neighbors and 180.3±20.4 versus 451.5±120.2 for
six neighbors for DC versus PC; mean±s.d.; two-tailed unpaired t-test
withWelch’s correction, P=0.012 for five neighbors and P=0.018 for
six neighbors; n=4). This supports the observation of larger neuronal
counts per ganglion in the DC. However, to account for differences in
neuronal numbers in the PC and DC, the raw neighbor counts were
normalized to total neuron count for each region. This revealed
significant regional differences and a shift in the neuronal distribution
(Fig. 3E). In the DC, a significant proportion of neurons had
fewer neighbors, which is indicative of smaller ganglion size and,

consequently, smaller neuronal clusters. The larger ganglion size and
neuronal clusters were evident from the larger proportion of cells
having more neighbors (Fig. 3E,F) in the PC relative to the DC
(normalized counts of 0.27±0.01 versus 0.23±0.01 for three
neighbors, 0.14±0.005 versus 0.2±0.007 for five neighbors and
0.05±0.004 versus 0.1±0.013 for six neighbors for DC versus PC;
mean±s.d.; two-tailed unpaired t-test with Welch’s correction,
P=0.0007 for three neighbors, P=0.00003 for five neighbors and
P=0.002 for six neighbors; n=4). Thus, the number of PNs is
proportional to the cell density and size of the ganglion.

Region-specific differences in the distribution of neuronal
subtypes could be reflective of the specific functions of the GI
subregions (Hamnett et al., 2022b; Li et al., 2019; Nestor-Kalinoski
et al., 2022). The regional distribution of the Ca2+-binding proteins
Calb and Calret in neurons of the PC and DC was examined using
images from the Hamnett et al. (2022a) dataset. The aim was to test
the capacity of GAT to detect established regional differences in ENS
distribution and investigate the relative distribution of these neuronal
markers as they were co-labeled in the same tissue (Fig. 3G). Using
GAT analysis, a higher proportion of Calb-positive (Calb+) neurons
was detected in the PC compared to the DC (Fig. 3H; 1.99±0.78 for
DC versus 6.25±2.71 for PC; mean±s.d.; two-tailed unpaired t-test
with Welch’s correction, P=0.046; n=4). Conversely, no significant
differences in the number of Calret-positive (Calret+) neurons were
detected across regions (Fig. 3I; 26.96±4.9 for DC versus 23.51±9.3
for PC;mean±s.d.; two-tailed unpaired t-test withWelch’s correction,
P=0.54; n=4), consistent with Hamnett et al. (2022a,b). In this
dataset, preparations were co-labeled for Calb and Calret, enabling
the use of GAT to assess neurons that were positive for both these
markers. A very small proportion of Calret and Calb double-positive
neurons were detected in PC and DC, and no significant difference
was found in the distribution across regions (Fig. 3J; 0.65±0.46 for
DC versus 1.54±0.71 for PC; mean±s.d.; two-tailed unpaired t-test
with Welch’s correction, P=0.08; n=4).

The distribution of Calb+ and Calret+ neurons was further assessed
using spatial analysis in GAT. This revealed significantly greater
numbers of neurons with one Calb+ neighbor in the PC compared to
that in the DC (Fig. 3K; 0.18±0.06 for PC versus 0.06±0.02 for DC;
mean±s.d.; two-tailed Mann–Whitney U-test, P=0.03; n=4). This
finding aligns with the observation that the PC contains a greater
proportion of Calb+ neurons (Fig. 3H), resulting in a larger number of
Calb+ neighbors surrounding each neuron compared to the DC. No
difference between regions was detected for neurons with Calret+
neighbors (Fig. 3L), which aligns with the finding of no difference in
the proportion of Calret+ neurons between DC and PC (Fig. 3I). The
spatial distribution of neurons that coexpressed Calb and Calret was
also determined, with no significant difference between regions
(Fig. 3M,N). Spatial analysis of Calret+ neurons relative to Calb+
neurons and vice versa did not reveal any regional differences,
suggesting that Calret+ neurons do not preferentially associate with
Calb+ neurons in either the PC or DC. These analyses demonstrate
that spatial analysis usingGATeffectively detects regional differences
in neuronal and neuronal subtype distribution.

DISCUSSION
GAT is a user-friendly Fiji-based software for studying the
distribution of enteric neurons and their neurochemical coding
in wholemount preparations of GI tissue in 2D. It uses DL models
for segmentation of neurons and ganglia, which enables higher
throughput and faster data extraction, making it possible to analyze
large tissue areas, increasing the accuracy of neuronal density
estimates (Fig. S1). Moreover, spatial analysis in GAT provides an
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Fig. 3. Spatial analysis in GAT can adjust for non-uniform tissue stretching and can objectively describe region-specific differences in neuronal
distribution. (A) Both images show the same field of view of a myenteric plexus wholemount preparation of the Wnt1-cre:Rosa26-tdTomato mouse colon.
The image on the left shows the specimen that was pinned in a petri dish (‘unstretched’), and the image on the right shows the same specimen in the
presence of stretch. Scale bars: 100 µm. (B) Quantification of images as in A demonstrates that stretching the specimen leads to altered calculations of
neuronal density (2696 neurons/mm2 versus 1493 neurons/mm2; N=1). (C) Proximal neighbor analysis shows similar distribution results for non-stretched
versus stretched preparations (N=1). (D) Proximal neighbor distribution for the mouse proximal colon (PC) versus distal colon (DC) from a publicly available
dataset (Hamnett et al., 2022a,b) without normalization to the total cell count shows that the PC has larger neuronal clusters, with a significantly large
number of neurons with neighbor counts of 5 and 6 (*P=0.012 and *P=0.018, respectively; two-tailed unpaired t-test with Welch’s correction). Mean±s.d.;
n=4. (E) Normalizing the data in D for total neuron count (Hu-positive neurons) reveals that the DC has smaller neuronal clusters, with significantly more
neurons having a neighbor count of 3, whereas the PC has larger neuronal clusters, with a significantly larger proportion of neurons having neighbor counts
of 5 and 6 (****P=0.0007, ****P=0.00003 and **P=0.002, respectively; two-tailed unpaired t-test with Welch’s correction). Mean±s.d.; n=4. (F) The difference
in number of neighbors across regions can be visualized in a neighbor count map, where there are more orange- and red-colored neurons in PC (bottom)
than in DC (top). Scale bars: 100 µm. (G) Representative images showing labeling of Calb and Calret in the mouse DC and PC. Scale bars: 100 µm.
(H–N) Quantification and proximal neighbor analysis of Calb- and Calret-positive neurons in the mouse DC and PC. (H) Calb-positive neurons are a greater
proportion of the total neurons in the PC compared to the DC (*P=0.046, two-tailed unpaired t-test with Welch’s correction), whereas there is no significant
difference in the distribution of (I) Calret-positive neurons or (J) Calret and Calb double-positive neurons (P=0.54 and P=0.08, respectively; two-tailed
unpaired t-test with Welch’s correction; ns, not significant). (K) This is reflected in the normalized PN distribution plots, where a higher proportion of neurons
have one Calb-positive neighbor in the PC relative to the DC (*P=0.03; two-tailed unpaired t-test with Welch’s correction). No regional differences in
(L) Calret-positive neurons or (M,N) preferential association between Calret-positive and Calb-positive neurons are detected. Boxplots in H–J show the
median (line), interquartile range (box) and minimum to maximum values (whiskers) of n=4. Data in K–N are presented as mean±s.d. of n=4.
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objective means for characterizing the distribution of cells and
distinct subpopulations. The DL models are coupled with a user-
friendly workflow, thus enabling researchers with minimal
computational expertise to adopt GAT for rapid and reproducible
image analysis.
The availability of state-of-the-art user-friendly tools such as

StarDist (Schmidt et al., 2018) and deepImageJ (Gómez-de-Mariscal
et al., 2021), in combination with ZeroCostDL4Mic (von Chamier
et al., 2021), was crucial for the development of GAT. The GAT
enteric neuron models can be used within any software that supports
StarDist, thus giving the user flexibility to generate custom analysis
pipelines should they be required. The GAT software repository has
models and scripts that are compatible with QuPath, a popular image
analysis software for analyzing whole-slide images and large 2D
images. Cellpose was used to compare the segmentation abilities of
the DL models as it works readily on diverse datasets and the user
interface makes it simple to use. It is unclear whether the Cellpose
cyto2 model was trained on enteric neuronal datasets, which might
explain the slightly lower performance metrics when compared to
GAT (Fig. 2). In Cellpose v2.0, additional models trained on
fluorescence images are available, which might show an improvement
over cyto2 (Pachitariu and Stringer, 2022). Moreover, the best
performance can be achieved by fine-tuning the Cellpose models,
where the GAT training dataset can be combined with user-specific
data to generate custom models (Pachitariu and Stringer, 2022). This
could increase the accuracy of segmentation. However, performing
quality checks with objective metrics is essential to evaluate the
performance of DL models, as shown in Fig. 2A,C and Fig. S2.
StarDist was used for segmenting cells within GAT, as the

software is optimized to detect objects with star-convex shapes such
as cell nuclei. Thus, it is suitable for detecting enteric neurons,
which have a circular shape (Schmidt et al., 2018). Other important
benefits include the availability as a Fiji plugin; the ability to
use StarDist within macros and/or scripts; the ability to tune the
cell detection by changing the ‘probability’ value, allowing
segmentation of images with varying labeling intensities or with
high background noise; and the ability to detect overlapping cells.
The overlap detection can be adjusted by changing the ‘overlap
threshold’ value. This is particularly useful for analyzing tissue that
has not been stretched appropriately or tissue from larger animals
where the ganglia are thicker, resulting in greater overlap between
cells in 2D. The caveat of using StarDist is that it can only be used
for round cells and not for cells with complex morphology. This
currently limits its use to enteric neurons, and other cell types where
a nuclear stain is available, such as Sox10 for enteric glia. Thus,
other cells with non-circular complex shapes, such as tissue resident
macrophages or interstitial cells of Cajal, cannot be analyzed using
the current pipeline. Future versions of GAT aim to add support for
analyzing diverse cell types within the gut wall.
A limitation of using DL-based models in GAT is that they might

not work across image types that GAT has not previously encountered.
This variation could be images of wholemount preparations from
other species (Fig. S2J), different regions or layers of the GI tract, or
even images acquired using modalities that were not used for training
GAT. This could be rectified by retraining the models with new data,
but it might not always be feasible as this process is laborious and
requires computational expertise. Given the evolving landscape of
image analysis and cell segmentation software, GAT offers an option
of importing custom segmentations for cells and ganglia directly into
the analysis pipeline. This feature allows flexibility for the user to
choose their preferred cell segmentation tool. As an example, this
approach was used in Fig. 3. The neuron subtype model successfully

segmented Calb+ neurons but was not consistent for Calret+ neurons,
as the labeling was heterogenous. Similarly, segmentation of ganglia
was not consistent using the ganglia model. To rectify this, QuPath
was used for training an object classifier for Calret+ neurons and a
pixel classifier for ganglia, thus enabling segmentation of Calret+
neurons and ganglia, respectively. The respective detections and
annotations were exported from QuPath and reimported back into
GAT during analysis.

One limitation of GAT is that the analysis workflow is currently
designed for 2D images, as the Fiji StarDist plugin (v0.3.0) is
limited to 2D datasets. Currently, GAT does not support importing
three-dimensional (3D) segmentation from other software. When
cells that occupy a 3D space are projected as a 2D image, they can
often superimpose or overlap with each other, leading to challenges
in accurately delineating and segmenting these cells (Fig. S2K).
Separation of cells is more readily achieved with 3D data; however,
only the Python implementation of StarDist supports 3D
segmentation. Furthermore, cell shape and size are more
accurately measured in 3D compared to 2D. One reason is that the
volume measurements are less impacted by differences in tissue
stretch compared to area measurements in 2D. 3D segmentation
requires DL-based approaches that use high-quality 3D annotations,
which is a time-consuming and laborious process. Several tools are
available for annotating data in 3D (Berg et al., 2019; Boergens
et al., 2017; Borland et al., 2021; Fedorov et al., 2012; Tasnadi et al.,
2020). However, the success of DL models relies on the availability
of large amounts of high-quality training data that account for the
diversity of the markers used, the animal species studied, how the
tissue was prepared and the variability in the instruments used for
acquisition. Existing tools such as Cellpose (Stringer et al., 2021),
3D ImageJ suite (Ollion et al., 2013), and CLIJ or pyclesperanto
(Haase et al., 2020a preprint, 2020b; https://github.com/clEsperanto/
pyclesperanto_prototype) can be used for processing 3D data and
enabling curation of labeled data. Commercial software such as Imaris
has also been used to generate 3D masks for human enteric neurons
(Parker et al., 2023). To enable ENS-specific analytical solutions, it is
essential to have robust training data made accessible to the wider
research community. For example, the GAT training dataset was
deposited on Zenodo, an open data repository (see Materials and
Methods). This has been utilized to generate custom cell segmentation
models for image analysis software to quantify Ca2+ signaling in the
gut (Barth et al., 2023). Moreover, the GATmodels can be fine-tuned
using custom data.

Manual analytical approaches to assess changes in the ENS are
limited to cellular density and the number of neuron subtypes within
the tissue. However, incorporating spatial analysis can reveal insights
into cellular distribution, interactions and potential implications for
function at a tissue level (Nestor-Kalinoski et al., 2022). Existing
spatial analysis software solutions require significant computational
expertise and may require optimization to study the ENS (Feng et al.,
2023; Rose et al., 2020; Stoltzfus et al., 2020). Factors such as
operator expertise, animal species being studied and the pathology
investigated can affect how the tissue is stretched and prepared as a
wholemount (Gomez-Frittelli et al., 2023; Kapur, 2013). This, in
turn, can affect analysis and interpretation of cellular distribution
(Fig. 3A–C). GAT accounts for possible variations in tissue stretch by
using an enteric neuron-specific nearest neighbor distance threshold
value. Differences in neuronal distribution were demonstrated
objectively using the PN analysis in GAT. The PC was found to
have relatively larger neuronal clusters compared to the DC,
indicative of the large and small ganglion sizes in these regions,
respectively. Despite the large variability in ganglion sizes within
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each region, the PN analysis effectively detected region-specific
differences and proved to be a more robust measure than neuronal
density measurements. Altered distribution of Calret+ and Calb+
neurons across the PC and DC were reflected in the spatial analysis,
and no spatial associationwas found between neuronal subtypes. This
approach can be extended to assess changes in the structure or
morphology of the ENS across gut regions or in diseases including
inflammatory bowel disease (Brierley and Linden, 2014), diabetes
(Chandrasekharan et al., 2011; Demedts et al., 2013) and enteric
neuropathies, such as Hirschsprung disease (Heuckeroth, 2018). For
example, this analysis could be used to determine whether there are
subtle differences, such as fewer nNOS-positive neuronal neighbors,
which would be indicative of lower nNOS-positive neurons in these
conditions. The parameters, such as the average PN distance, might
need to be modified for human tissue, and this is configurable within
GAT. Due to the analysis capabilities of GAT being limited to enteric
neurons, the spatial analysis does not capture the complexity of
cellular distribution and relationships with other cell types, such as
enteric glia, macrophages and interstitial cells of Cajal. Incorporating
additional spatial analysis metrics such as those related to cell
colocalization or spatial heterogeneity (Feng et al., 2023), or the use of
a spatial neighbors graph to understand neighborhood enrichment
(Palla et al., 2022), could enable a more comprehensive and unbiased
examination of cellular interactions and distributions in the gut.
GAT excels at segmenting neurons and works across images of

varying staining qualities (Fig. S2H). It offers a faster alternative to
manual analysis and has been designed with ENS-specific analysis
solutions, such as studying neurochemical coding and spatial analysis
of neuronal distribution. New features are regularly being introduced
based on user feedback and experience. To enable compatibility for
further analysis in other software, segmentation maps, cell outlines,
cell type information and cell coordinates are extracted for each
experiment during analysis. GAT is written in Fiji using the macro
language, limiting the scope of the user interface and its interactivity.
Future versions of GAT could use scripting languages in Fiji, which
would offer greater flexibility in developing highly interactive user
interfaces. Moreover, the availability of StarDist models enables the
development of interactive workflows in napari and QuPath. GAT
aims to create a toolbox that automates common image analysis tasks
in ENS research, eliminating the burden of manual analysis. This
allows scientists to spend more time interpreting biology and
advancing scientific research.

MATERIALS AND METHODS
Datasets
The following previously reported datasets were used for training and
benchmarking the neuronal, neuronal subset and ganglia segmentationmodels.
(1) Lab 1: mouse (DiCello et al., 2020) , rat (Furness et al., 2023). (2) Lab 2:
mouse (McQuade et al.. 2021). (3) Lab 3: mouse (Poon et al., 2022). (4) Lab4:
human (Chen et al., 2023).

External datasets were also used for creating DL models. Data from the
Stimulating Peripheral Activity to Relieve Conditions (SPARC) program
website (https://sparc.science) were used for training the neuronal, neuronal
subset and ganglia segmentation models. Within the SPARC portal, data
from mouse (Nestor-Kalinoski et al., 2022; Kalinoski et al., 2021; Wang
et al., 2021) and human myenteric plexus wholemount samples (Graham
et al., 2020b) were used for curating training datasets.

The following previously reported datasets were used for proximal
neighbor analysis in Fig. 3D–N: Calret+ and Calb+ images of DC and PC
from dataset named EXP 174 in Hamnett et al. (2022a,b).

Mice
Details of housing conditions and ethics statements for the previously
reported mouse data used within this study can be found in the respective

studies (DiCello et al., 2020; Hamnett et al., 2022b; McQuade et al., 2021;
Nestor-Kalinoski et al., 2022; Poon et al., 2022).

For the data in Fig. 3A–C, B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/
J (Jackson Laboratory, Bar Harbor, ME; stock no. 007905) mice were
crossbred with B6.Cg-E2f1Tg(Wnt1-cre)2Sor/J (Jackson Laboratory; stock no.
022501) mice. The F1 offspring expressed tdTomato within all ENS cells.
The animals were handled in accordance with the institutional guidelines of
the University of Tübingen, which conform to international guidelines.
Mice were housed in standard plastic cages with standard bedding under a
12 h light-to-dark cycle at 22±2°C, 60%±5% humidity, with free access to
food and water.

Rat
The details of housing conditions and ethics statements for the previously
reported rat data used within this study can be found in Furness et al. (2023).

Human tissue
Pediatric colon tissue (used for model training data, Lab 1) was obtained
from a 4-month-old male patient with rectosigmoid disease, with prior
written informed consent from a parent/guardian [Royal Children’s Hospital
and Monash University (HREC: 38262 and 21091)], in accordance with
principles expressed in the Declaration of Helsinki. The ethics statement for
the previously reported data from adult human tissue can be found in Chen
et al. (2023).

Wholemount tissue preparation and immunohistochemistry
The antibodies used are listed in Table S4.

Mouse
The protocols used for dissection and immunohistochemistry of mouse
myenteric wholemounts varied across labs and are summarized in the
respective publications from each source (DiCello et al., 2020; Hamnett
et al., 2022b; McQuade et al., 2021; Nestor-Kalinoski et al., 2022; Poon
et al., 2022). For experiments using the Wnt1-cre:Rosa26-tdTomato
mouse, the colon was excised from the abdomen of the mouse and
incubated in preparation medium (HBSS without Ca2+or Mg2+, containing
1 µM nifedipine). The tissue was cleared of contents, cut open longitudinally
and laid flat on a silicone elastomer-lined dish (Sylgard, Dow Corning,
Midland,MI, USA) in preparation medium. To acquire images of unstretched
colon, the tissue was laid flat without pinning, and images acquired using a
Zeiss Axio Imager Z1 (20× HC PL APO NA 0.8) across various locations of
the preparation. After image acquisition, the tissue was maximally stretched
along the longitudinal and circumferential axis and pinned mucosa
downwards on the silicone elastomer-lined dish. The stretched preparation
was fixed in 4% paraformaldehyde for 10 min at room temperature, and
subsequently rinsed [3×1 h in phosphate-buffered saline (PBS)]. Images of
the stretched preparation were acquired bymanually locating the corresponding
region from the unstretched preparation.

Human
The protocol for used for adult human colon samples can be found in
Chen et al. (2023). For the pediatric human colon tissue, surgical specimens
were transferred into PBS (pH 7.2) containing nicardipine (10 µM). The
tissue was opened to flat sheets along the longitudinal axis, maximally
stretched along the longitudinal and circumferential axis, and pinned
mucosa downwards on a silicone elastomer-lined dish (Sylgard, Dow
Corning, Midland, MI, USA). The tissue was fixed in 4% paraformaldehyde
overnight at 4°C, and subsequently cleared (3× 1 h in PBS). The mucosa,
submucosa and circular muscle were removed by sharp dissection to
prepare longitudinal muscle-myenteric plexus (LM-MP) wholemount
preparations. The tissue preparations were blocked and permeabilized
overnight in blocking buffer (PBS with 5% normal donkey serum, 0.1%w/v
sodium azide and 0.5% Triton X-100). The samples were incubated in
HuC/D primary antisera diluted in blocking buffer (5–7 days at 4°C;
Table S4). The LM-MP preparations were washed (3× 30 min, PBS
with 0.1% w/v sodium azide) and incubated in secondary antibodies
(PBS with 0.1% w/v sodium azide, overnight at 4°C). They were then
washed (PBS, 2× 30 min), followed by labeling with the nuclear marker
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4’,6-diamidino-2-phenylindole (DAPI; 1:500 in PBS, 1 h at room
temperature). The samples were then washed once in PBS and mounted
in buffered glycerol (nine parts glycerol and one part PBS; pH 8.5–9.0).

Image acquisition
Datasets generated for this study were acquired using different instruments.
This enables the DL models to generalize well and work across a variety of
data acquired with commonly used microscopes.

Images of mouse tissue were acquired using a Leica TCS-SP8 confocal
system (20× HC PL APO NA 1.33, 40× HC PL APONA 1.3), a Leica TCS-
SP8 Lightning confocal system (20× HC PL APO NA 0.88), a Zeiss Axio
Imager M2 (20× HC PL APO NA 0.3) or a Zeiss Axio Imager Z1 (10× HC
PL APO NA 0.45). Human tissue images were acquired using an Olympus
IX71 microscope (10× HC PL APO NA 0.3) (Chen et al., 2023) or a Leica
TCS-SP8 confocal system (20× HC PLAPONA 1.33, 40× HC PLAPONA
1.3). Acquisition of SPARC datasets used a Leica TCS SP5 laser scanning
confocal microscope (20× NA 0.70, 40× NA 1.25 or 63× NA 1.4) (Nestor-
Kalinoski et al., 2022) or a Zeiss LSM 710 confocal microscope (10× and
20× PL APO) with z-axis increments of 4 μm (10× objective) or 1 μm (20×
objective) (Graham et al., 2020b).

Software
Training data
Training data were generated using custom scripts written in Fiji macro
language, provided with GAT (GAT→Tools→Data Curation). Briefly, the
entire image or a portion of the image was selected for annotation. This was
followed by manually outlining neurons using the drawing tools and saving
them in theROIManager. For the enteric neuron datasets, the annotated images
of varying sizes were saved as raw images and as segmented label images,
where each neuron had an individual pixel value. In the label images all pixels
with value 1 belong to neuron 1, all pixels with value 2 belong to neuron 2
and so on. The binary masks were saved for segmentation of ganglia. The
annotation was performed and verified by at least two researchers experienced
with the identification of enteric neurons and ganglia. Briefly, the outlines from
the label imagewere overlaid on the raw images and verified for each cell using
Fiji. The ‘Verify Images Masks’ macro within GAT→Tools→Data Curation
was also used. For images that had DAPI labeling, the neuronal nuclei were
used to delineate overlapping cells. Incorrect regions of interest (ROIs) were
deleted and redrawn using the Oval or Freehand drawing tools in Fiji.

Enteric neuron models
The training images (Tables S1 and S2) were normalized to account for any
variations in the sizes of cells in pixels due to image acquisition conditions,
such as resolution andmagnification, and species differences. The images from
mouse and rat tissuewere scaled to a pixel size of 0.568 µm per pixel, whereas
the images from human tissue were scaled to 0.9 µm per pixel due to the larger
cell sizes. This rescaling process ensured that the training images had a uniform
average neuron area of 701.2±195.9 pixel2 (mean±s.d., 6267 cells) irrespective
of image magnification or animal species. A similar approach was used to
generate a training dataset for the enteric neuron subtype model. This training
dataset contained images of neurons expressing various neurochemical
markers, including Calb, nNOS, Calret, choline acetyltransferase (ChAT),
delta-opioid receptor (DOR, also known as OPRD1), mu-opioid receptor
(MOR, also known as OPRM1), neurofilament 200 (NF200, also known as
NEFH) and somatostatin. The average cell area in the neuronal subtype
dataset was 880.9±316 pixel2 (mean±s.d., 924 cells), with around 56.6% of
the cells being nNOS positive. Thus, nNOS cells were overrepresented in the
dataset. The StarDist v0.3.0 Fiji plugin was used for inference.

Ganglia model
The ganglia model was trained on images (Table S3) with both the pan-
neuronal marker Hu and a second marker that labeled the neuronal or glial
fibers. Regions where both markers were co-distributed were manually
labeled as ganglia. Each ganglion was demarcated from a closely apposing
ganglionic structure if an interganglionic strand separated them and/or if the
gap was greater than the diameter of a single cell. The markers used for the
identification of ganglionic structures consisted of any of the following:
protein gene product 9.5 (PGP9.5, also known as UCHL1), nNOS, glial

fibrillary acid protein (GFAP), S100b, Tuj1 or NF200. The deepImageJ
v2.1.12 Fiji plugin was used for inference.

DL models and software
StarDist v0.7.3 (Schmidt et al., 2018) was used via ZeroCostDL4Mic v1.13
notebooks (von Chamier et al., 2021) within Google Colab for training the 2D
segmentation models for enteric neurons and neuronal subsets. The ganglia
modelwas trained inGoogle Colab using a 2DUNet architecture (Ronneberger
et al., 2015) and exported to be readily used within deepImageJ (Gómez-de-
Mariscal et al., 2021). The notebooks used for training the models, the training
datasets used, training reports, model quality reports, and the models are
deposited online at Zenodo (Sorensen et al., 2022; https://doi.org/10.5281/
zenodo.10460434).

Cellpose (v0.7) was used as a baseline for comparing cell segmentation in
this study. It is a generalist cell segmentation solution aimed at analyzing a
wide variety of cell types (Stringer et al., 2021). It is not known whether
Cellpose has been trained on enteric neuron images.

All training data and DL models are deposited at Zenodo (Sorensen
et al., 2022; https://doi.org/10.5281/zenodo.10460434). Some of the
essential training parameters are listed below. The training parameters
used for the enteric neuron StarDist model were: number of epochs, 400;
patch size, 240×240; batch size, 2; number of steps, 86; percentage
validation, 10; n rays, 96; grid parameter, 2; initial learning rate, 5×10−5.
The training parameters for the enteric neuron subtype StarDist model
were: number of epochs, 300; patch size, 240×240; batch size, 1; number
of steps, 171; percentage validation, 10; n rays, 96; grid parameter, 2;
initial learning rate, 5×10−5. The training parameters for the ganglia UNet
model were: number of epochs, 40; patch size, 768×768; batch size, 4;
number of steps, 81; percentage validation, 0.1; initial learning rate,
0.0002; pooling steps, 0; min fraction, 0.

COUNTEN analysis
For benchmarking with COUNTEN (Kobayashi et al., 2021), the software
was accessed from https://github.com/KLab-JHU/COUNTEN. The analysis
used the default values of sigma and the minimum number of neurons per
ganglion, set at 7 and 3, respectively. A Google Colab notebook was
designed to enable interactive analysis with an option for batch analysis,
which can be accessed from https://github.com/pr4deepr/COUNTEN.

Analysis of calbindin- and calretinin-positive cells
A publicly available dataset (Hamnett et al., 2022a) was used for analyzing
Calb- and Calret-positive cells. Image files with Calb and Calret co-labeling
(EXP 174) were analyzed using a combination of QuPath v0.4.3 (Bankhead
et al., 2017) and GAT. Due to inconsistent segmentation of the ganglia
using the ganglia model, a pixel classifier was trained in QuPath to
identify ganglia based on the co-expression of Hu, Calb and Calret. The
resulting annotations were exported from QuPath as Fiji-compatible ROIs,
which were subsequently imported into GAT for analysis. Similarly, the
enteric neuron subtype model detected Calb-positive neurons but did not
reliably detect Calret-positive cells. To address this, an object classifier was
trained in QuPath to detect Calret-positive neurons. The neurons were
initially detected using the enteric neuron StarDist model based on the Hu
channel, followed by the application of the object classifier. Only the Calret-
positive ROIs were extracted from QuPath and imported into GAT for
analysis.

The results for each replicate were merged into summary data using the
scripts within GAT→Analysis. The summary data were analyzed in Python
(v 3.9.15) and pandas (v 2.0.2) and visualized using seaborn (v 0.12.2). The
analyzed data were exported, and statistical analysis was performed in
GraphPad Prism (v 9.5.1).

Effects of varying magnification and sampling
An image of a myenteric wholemount of the mouse colon (13.9 mm2) labeled
with Hu was used with QuPath v0.3.2 (Bankhead et al., 2017) to test
the effects of varying magnification and sampling on estimated cell counts
(Fig. S1B–E). A whole image annotation was created and then divided into
tiles, where each tile had areas of 775,918 µm2, 338,116 µm2 and
150,274 µm2, thus simulating 10×, 20×, and 40× objective magnifications,
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respectively. Tiles at the edges of the tissue that were below 60,000 µm2 in
area and areas with uneven staining were excluded in the subsequent
calculations. To perform cell segmentation, a custom groovy script in
combination with the StarDist 2D enteric neuron model converted into
ONNX format was used in QuPath (https://github.com/pr4deepr/
GutAnalysisToolbox/tree/main/QuPath_workflow). The parameters used for
segmentation were a rescaling factor of 1 and a probability of 0.65. Once
segmentation was performed, the cell numbers were saved using the
measurement tables. Once cell counts were estimated, a custom Python
script was used to choose random tiles and estimate mean values. The Python
code and analysis are deposited at Zenodo (https://doi.org/10.5281/zenodo.
13932357; version 1.0; Rajasekhar et al., 2024).

Evaluation of Cellpose and StarDist segmentation
The segmentation metrics for Cellpose cyto2 and StarDist enteric neuron
model were further evaluated using Adapted Rand error, VOI merge
and VOI split on the test data from the enteric neuron model training.
Adapted Rand error assesses the overall segmentation quality, whereas VOI
merge and VOI split assess errors associated with cell merging and splitting,
respectively (Wolny et al., 2020). The evaluation script from plant-seg-tools
GitHub repository (https://github.com/hci-unihd/plant-seg-tools/tree/main)
was used to evaluate the segmentation results from the Cellpose cyto2 and
enteric neuron StarDist model against the ground truth data (Fig. S2E–G).

Benchmarking on human data
Two publicly available datasets containing images of neurons in the human
myenteric plexus were used to evaluate the GAT enteric neuron model,
which contained widefield (Parker et al., 2022) and confocal image datasets
(Chen et al., 2023) (Fig. S2J,K). Maximum-intensity projection images of
the confocal datasets were generated in Fiji. Manual cell counts for
widefield datasets were performed in Fiji, whereas the cell counts for the 3D
datasets were obtained from their corresponding Imaris files (Parker et al.,
2023). The rescaling factor was optimized for each dataset using the ‘Test
neuron rescaling’ option within GAT. For neuronal counts in GAT, a
rescaling factor of 0.5 was used for thewidefield images, and the default of 1
was used for the confocal image datasets with a probability of 0.65.

Other
ChatGPT (GPT-3.5) was used for initial formatting and editing of the
manuscript. The outputs have been edited, and the authors take full
responsibility for the content of this publication.

The brightness of the microscopy images in Figs 2F and 3G was adjusted
in a linear and uniform manner using the Brightness/Contrast dialog in Fiji
to enable better contrast for visualizing the ganglia.
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Gómez-De-Mariscal, E., Garcıá-López-De-Haro, C., Ouyang, W., Donati, L.,
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Lerche, M., Hernández-Pérez, S., Mattila, P. K., Karinou, E. et al. (2021).
Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat.
Commun. 12, 2276. doi:10.1038/s41467-021-22518-0

Wang, L., Yuan,P.-Q., Gould, T. and Tache, Y. (2021). Antibodies Tested in theColon
– Mouse (Version 1.0) [Data set]. SPARC Consortium. doi:10.26275/i7dl-58h1

Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux, M.,
Wenzl, C., Strauss, S., Wilson-Sánchez, D., Lymbouridou, R. et al. (2020).
Accurate and versatile 3D segmentation of plant tissues at cellular resolution.
eLife 9, e57613. doi:10.7554/eLife.57613

12

TOOLS AND RESOURCES Journal of Cell Science (2024) 137, jcs261950. doi:10.1242/jcs.261950

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1016/j.humpath.2009.12.012
https://doi.org/10.1016/j.humpath.2009.12.012
https://doi.org/10.1016/j.humpath.2009.12.012
https://doi.org/10.1093/bioinformatics/btaa029
https://doi.org/10.1093/bioinformatics/btaa029
https://doi.org/10.1093/bioinformatics/btaa029
https://doi.org/10.1093/bioinformatics/btaa029
https://doi.org/10.1111/nyas.13176
https://doi.org/10.1111/nyas.13176
https://doi.org/10.1111/nyas.13176
https://doi.org/10.1016/j.brainres.2011.01.030
https://doi.org/10.1016/j.brainres.2011.01.030
https://doi.org/10.1016/j.brainres.2011.01.030
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.26275/i7dl-58h1
https://doi.org/10.26275/i7dl-58h1
https://doi.org/10.7554/eLife.57613
https://doi.org/10.7554/eLife.57613
https://doi.org/10.7554/eLife.57613
https://doi.org/10.7554/eLife.57613

