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No Place Like Home
Can Omics Uncover the Secret behind 
the Sea Anemone and Anemonefish 
Symbiotic Relationship?

Cassie M. Hoepner, Emily K. Fobert, Catherine A. Abbott, 
and Karen Burke da Silva

19.1 � INTRODUCTION

First recorded in 1868 (Collingwood 1868), anemonefish 
and anemones have one of the most well-known and iconic 
symbiotic relationships (Hobbs et  al. 2012; Mebs 2009; 
Nedosyko et  al. 2014). There are 28 different species of 
anemonefish that form associations with only ten species of 
host anemones (Fautin and Allen 1992). Although the asso-
ciation between anemonefish and sea anemones has existed 
for at least 12 million years (Marcionetti et al. 2019), this 
symbiotic relationship is quite rare, occurring in only ten 
out of over 1,200 species of anemones. Anemones also form 
a tripartite symbiosis with zooxanthellae that provide up to 
85% of their daily nutrient budget (Lonnstedt and Frisch 
2014). The symbiotic relationship with anemonefish has 
likely evolved three times amongst three unrelated anemone 
families (Thalassianthiade, Actinidae, Stichodactylidae) 
(Titus et  al. 2019), with two genera contributing seven 
species (Heteractis – four species; Stichodactyla – three 
species) (Fautin 1991). In comparison, the anemonefish 

mutualism with anemones is thought to be present in the 
common ancestor of all anemonefish (Litsios et al. 2012). 
The evolution and diversification of anemonefish have ben-
efited from their associations with host anemones, through 
increased rates of species diversification and morphologi-
cal evolution in comparison to other coral reef fish without 
anemone associations (Litsios et al. 2012). The majority of 
anemonefish diversity is thought to have occurred in the last 
five million years, with 25 of the 28 species evolving during 
that time.

The mutualistic nature of the anemone and anemone-
fish symbiosis indicates that both organisms provide and 
receive a variety of benefits. For anemonefish, the toxic 
anemone provides a safe site for reproduction and pro-
tection from predation (Holbrook and Schmitt 2004). In 
return, anemonefish aid the growth, reproduction, and sur-
vival of anemones by providing nutrients (such as nitrogen 
and carbon) via faeces, increasing oxygenation by swim-
ming amongst the tentacles, and actively defending their 
host anemone from various predators such as chaetodontid 
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fishes and sea turtles (Godwin and Fautin 1992; Nedosyko 
et al. 2014; Frisch et al. 2016; Mariscal 1970a). This unique 
symbiosis has allowed anemonefish to develop a range of 
life-history traits that can be attributed to their close associ-
ation with venomous host anemones. For example, evidence 
suggests that anemonefish have exceptionally long lifes-
pans for a reef fish of their size, living up to 30-plus years 
(Buston and Garcia 2007), compared to five to ten years 
for other similarly sized reef fish (Sale 1980). Anemonefish 
are also unusually bold and aggressive for their size. For 
example, when approached, anemonefish will swim out of 
their anemone towards the threat, rather than retreating to 
safety (Godwin and Fautin 1992). These traits are not seen 
in closely related damselfish or other similar-sized reef 
fishes, thus providing anemonefish with a unique ecological 
advantage (Marcionetti et al. 2018).

Although the ecological success of both anemone and 
anemonefish is clearly enhanced due to the evolution of their 
symbiotic relationship, the mechanism enabling anemone-
fish resistance to anemone venom remains unclear. Exactly 
how anemonefish glean such significant fitness advantages 
that improve their lifespan and potential reproductive 
success is not yet fully understood; however, it is widely 
believed that anemonefish have a unique mucus layer cov-
ering their scales that is somehow involved in enabling the 
formation and existence of their symbiotic relationship 
with sea anemones. Despite decades of study, there are 
still many more questions that remain unanswered such as: 
how do anemonefish live unharmed amongst the anemone’s 
tentacles? How did this symbiotic relationship first evolve? 
And how do anemonefish pick the best anemone host?

In this chapter we (1) present an overview of the symbiotic 
relationship between anemones and anemonefish, including 
the factors that influence host selection; (2) present current 
hypotheses and discuss the existing evidence within the lit-
erature with a particular focus on the advances omics tech-
niques have provided; (3) explore anemone venom research 
and discuss how toxin resistance in other model systems 
can be applied to further our understanding of the anem-
onefish and anemone symbiosis; and (4) discuss how omics 
can be applied in the future to help answer the remaining 
questions surrounding this symbiotic relationship.

19.2 � INFLUENCES ON ANEMONEFISH 
HOST SELECTION

The relationship between different anemonefish species 
and anemone host species follows a unique and organized 
pattern that is not yet fully understood, with new asso-
ciations being discovered even now (Bennett-Smith et  al. 
2021) (Table 19.1). Anemonefish can be classified as host 
generalists; for example, Clark’s anemonefish (Amphiprion 
clarkii), is the only anemonefish species to form associa-
tions with all ten species of host anemones. In contrast, there 
are nine species of anemonefish that are host specialists (A. 
frenatus, A. chagosensis, A. pacificus, A. fuscocaudatus, A. 
latifasciatus, A. mccullochi, A. nigripes, A. sebae, and A. 

biaculeatus), forming associations with only a single anem-
one species (Burke da Silva and Nedosyko 2016). Despite 
co-existing within the same geographic region, there are 
a large number of anemone hosts with which anemonefish 
species do not associate (Table 19.1). This pattern demon-
strates that geographic range is not the factor that deter-
mines which anemonefish and anemone species associate 
(Fautin 1986). Other factors that may contribute to which 
species form associations could include: (1) anemone mor-
phology, (2) anemone toxicity, and/or (3) intraspecific com-
petition amongst anemonefish species.

19.2.1 �A nemone Morphology

Anemone tentacle length may provide a selective advan-
tage to anemonefish by concealing them from predators 
(Huebner et  al. 2012). Anemone species with longer ten-
tacles can provide a larger surface area for anemonefish to 
hide in and thus reduce the visibility of the anemonefish 
to predators (Huebner et  al. 2012). Stevens and Merilaita 
(2009) hypothesized that anemonefish stripes act to break 
up the body shape, making it more difficult for predators 
to detect the anemonefish amongst the tentacles and thus 
enhancing the anemone’s protective features at varying dis-
tances. The number of stripes on anemonefish was found to 
be correlated to the length of their host anemone’s tentacle; 
anemonefish species with two to three stripes form relation-
ships with anemone species that had longer tentacle mor-
phology, compared to anemonefish species with one or no 
stripes (Merilaita and Kelley 2018) (Table 19.1). Merilaita 
and Kelley (2018) also found that anemonefish with fewer 
stripes formed associations with a smaller number of host 
anemone species compared to anemonefish species with 
more stripes.

Furthermore, the morphology of anemone tentacles 
may make a species attractive as hosts for anemonefish. 
For example, the beaded anemone (Heteractis aurora) and 
bubble-tip anemone (Entacmaea quadricolor) have unique 
tentacle shapes that increase the surface area in which 
the anemonefish can hide, with dense beaded or bulb-
like tentacles (Figures 19.1a,b). The magnificent anemone 
(Heteractis magnifica) has the unique ability to enclose all 
its tentacles within its soft body by contracting inwards 
when disturbed (Figure 19.1c), providing increased protec-
tion to the anemonefish who can hide inside the anemone 
body during this dangerous time. As anemonefish rely on 
their anemone host for protection, anemonefish may favour 
hosts whose morphological traits offer them better shelter 
or protection from predators.

19.2.2 �A nemone Toxicity

Host anemone species range in the potency of their 
venom, from low to high haemolytic and neurotoxic tox-
icities (Nedosyko et  al. 2014). Interestingly, host anemo-
nes with higher haemolytic and neurotoxic toxicities have 
shorter tentacles (< 20 mm) compared with anemones with 



199No Place Like Home﻿

TA
B

LE
 1

9.
1

M
at

ri
x 

of
 A

ne
m

on
efi

sh
 a

nd
 H

os
t 

Se
a 

A
ne

m
on

e 
A

ss
oc

ia
ti

on
s 

A
cc

or
di

ng
 t

o 
To

xi
ci

ty

A
m

ph
ip

ri
on

 s
pp

:
H

et
er

ac
ti

s 
m

al
u

M
ac

ro
da

ct
yl

a 
do

re
en

si
s

H
et

er
ac

ti
s 

cr
is

pa
H

et
er

ac
ti

s 
au

ro
ra

En
ta

cm
ae

a 
qu

ad
ri

co
lo

r
H

et
er

ac
ti

s 
m

ag
ni

fic
a

St
ic

ho
da

ct
yl

a 
m

er
te

ns
ii

St
ic

ho
da

ct
yl

a 
ha

dd
on

i
St

ic
ho

da
ct

yl
a 

gi
ga

nt
ea

C
ry

pt
od

en
dr

um
 

ad
ha

es
iv

um
N

um
be

r 
of

 h
os

ts
N

um
be

r 
of

 s
tr

ip
es

cl
ar

ki
i

X
X

X
X

X
X

X
X

X
X

10
3

ak
in

dy
no

s
Ø

Ø
X

X
X

X
X

X
X

Ø
7

2

ch
ry

so
pt

er
us

Ø
X

X
X

X
X

X
X

Ø
Ø

7
2

bi
ci

nc
tu

s
X

X
X

X
X

X
X

Ø
7

2

tr
ic

in
ct

us
Ø

X
X

X
Ø

X
X

Ø
Ø

5
3

ch
ry

so
ga

st
er

X
X

X
X

4
3

pe
ri

de
ra

io
n

Ø
X

X
Ø

X
X

Ø
Ø

X
Ø

4
2

m
el

an
op

us
Ø

Ø
X

Ø
X

X
Ø

Ø
X

Ø
4

1

al
la

rd
i

Ø
X

X
Ø

X
Ø

Ø
Ø

3
2

oc
el

la
ri

s
Ø

Ø
Ø

Ø
Ø

X
X

Ø
X

Ø
3

3

pe
rc

ul
a

Ø
Ø

X
Ø

Ø
X

Ø
X

Ø
3

3

po
ly

m
nu

s
Ø

X
X

Ø
Ø

Ø
Ø

X
Ø

Ø
3

3

om
an

en
si

s
X

Ø
X

Ø
Ø

X
Ø

Ø
3

2

ru
br

oc
in

ct
us

Ø
Ø

Ø
X

Ø
Ø

Ø
X

Ø
2

1

sa
nd

ar
ac

in
os

Ø
X

Ø
Ø

Ø
X

Ø
Ø

Ø
2

1

ak
al

lo
pi

so
s

Ø
Ø

Ø
Ø

Ø
X

X
Ø

Ø
Ø

2
1

ba
rb

er
i

X
X

2
1

ep
hi

pp
iu

m
Ø

X
Ø

X
Ø

Ø
Ø

Ø
Ø

2
0

la
te

zo
na

tu
s

X
X

Ø
Ø

2
4

fr
en

at
us

Ø
Ø

Ø
X

Ø
Ø

Ø
Ø

Ø
1

1

ch
ag

os
en

si
s

Ø
Ø

X
Ø

Ø
Ø

Ø
Ø

1
2

pa
ci

fic
us

Ø
Ø

Ø
Ø

Ø
X

Ø
Ø

Ø
Ø

1
1

fu
sc

oc
au

da
tu

s
Ø

Ø
Ø

Ø
X

Ø
1

3

la
ti

fa
sc

ia
tu

s
Ø

Ø
X

Ø
1

2

m
cc

ul
lo

ch
i

Ø
X

Ø
Ø

1
1

ni
gr

ip
es

Ø
Ø

Ø
X

Ø
Ø

Ø
Ø

1
1

se
ba

e
Ø

Ø
Ø

Ø
Ø

Ø
Ø

Ø
1

2

bi
ac

ul
ea

tu
s

Ø
Ø

Ø
Ø

X
 (

so
lit

ar
y)

Ø
Ø

Ø
Ø

Ø
1

3

N
um

be
r 

of
 a

ss
oc

ia
te

s
1

4
14

7
17

12
12

9
8

1

Te
nt

ac
le

 le
ng

th
 (

m
m

)
40

17
5

75
50

10
0

10
0

20
10

10
5

To
xi

ci
ty

 r
an

k
1

2
3

4
5

6
6

7
7

8

N
ot

e:
	

X
 in

di
ca

te
s 

sp
ec

ie
s 

th
at

 a
ss

oc
ia

te
, Ø

 in
di

ca
te

s 
sp

ec
ie

s 
th

at
 a

re
 in

 th
e 

sa
m

e 
m

ar
in

e 
pr

ov
in

ce
 (

L
its

io
s 

et
 a

l. 
20

12
),

 b
ut

 d
o 

no
t a

ss
oc

ia
te

. A
ss

oc
ia

tio
n 

m
at

ri
x 

up
da

te
d 

fr
om

 B
ur

ke
 d

a 
Si

lv
a 

an
d 

N
ed

os
yk

o 
(2

01
6)

 
vi

a 
B

en
ne

tt-
Sm

ith
 e

t a
l. 

(2
02

1)
, A

lle
n 

et
 a

l. 
(2

01
0)

, A
lle

n 
et

 a
l. 

(2
00

8)
, F

au
tin

 a
nd

 A
lle

n 
(1

99
2)

, H
ob

bs
 e

t a
l. 

(2
01

4)
, S

co
tt 

et
 a

l. 
(2

01
5)

; P
ry

or
 e

t a
l. 

(2
02

2)
. T

en
ta

cl
e 

le
ng

th
 a

nd
 to

xi
ci

ty
 d

at
a 

fr
om

 M
er

ila
ita

 
an

d 
K

el
le

y 
(2

01
8)

, N
ed

os
yk

o 
et

 a
l. 

(2
01

4)
.



200 Evolution, Development and Ecology of Anemonefishes﻿

mid-range or low toxicities (Figure 19.2a) (Merilaita and 
Kelley 2018). This creates a protective trade-off, where 
anemones with higher toxicity levels are potentially better 
able to protect their anemonefish through their venom and 
thus do not need to invest in increased tentacle length to 
provide shelter for the anemonefish. Less toxic anemone 
hosts may use a combination of a low toxicity venom and 
a longer tentacle length to provide better shelter for anem-
onefish, than low toxicity alone would. The corkscrew 
anemone (Macrodactyla doreensis) is a key example of this 
trade-off, having the second-lowest toxicity level but the 
longest tentacles of any host anemone (175 mm) (Fautin and 
Allen 1992).

A study by Nedosyko et al. (2014) found a relationship 
between host anemone haemolytic and neurotoxic toxicity 

and anemonefish preference (Figure 19.2b). Host anemo-
nes that fell into the mid-range toxicity had the highest 
number of anemonefish species as symbiotic partners. 
These results suggest toxicity may be an important fac-
tor in anemonefish host preference and that anemone tox-
icity and the fitness costs associated with withstanding 
toxin is an important aspect of anemonefish and anem-
one symbiosis. Forming an association with an anemone 
species that has low toxicity may provide a small fitness 
advantage to anemonefish by helping them to gain pro-
tection from predators; however, evolving resistance to 
an anemone species that has high toxicity may require 
large energetic costs, which could also have negative 
impacts on anemonefish fitness. Thus, anemone species 
with mid-range toxicity may provide the best protection 

FIGURE 19.1  Various morphology of anemone hosts that aid in camouflaging anemonefish. A) Beaded tentacles of Heteractis 
aurora, B) bulb-like tentacles of Entacmaea quadricolor, C) retraction of tentacles by Heteractis magnifica. Images: Emily Fobert.

FIGURE 19.2   A) Negative relationship between anemone tentacle length (mm) and overall host anemone toxicity ranking (Merilaita 
and Kelley 2018). B) Relationship between number of anemonefish associates and overall host anemone toxicity ranking. Updated from 
Merilaita and Kelley (2018), Nedosyko et al. (2014).



201No Place Like Home﻿

per energetic cost, and ultimately be preferred by more 
anemonefish species (Nedosyko et  al. 2014). The anem-
one species E. quadricolor, which has a mid-range hae-
molytic and neurotoxic toxicity, forms associations with 
16 of the 28 species of anemonefish, whereas the delicate 
anemone (Heteractis malu) with lowest toxicity and the 
pizza anemone (Cryptodendrum adhaesivum) with high-
est haemolytic and neurotoxic toxicity form associations 
with only a single anemonefish species (Fautin and Allen 
1992). These association patterns provide support for the 
suggestion that toxicity plays a key role in the establish-
ment and maintenance of symbiotic relationships between 
different anemone and anemonefish species (Nedosyko 
et al. 2014; Burke da Silva and Nedosyko 2016).

19.2.3 �I nterspecific Competition amongst 
Anemonefish Species

Interspecific competition for anemone host species can be 
an indicator of host quality or host preference by anem-
onefish. Fautin (1986) defined preferred hosts as those 
harbouring many anemonefish associates. Anemonefish 
are known to be aggressive, which is needed to maintain 
ownership of their anemones, as well as the social hierar-
chies within the anemone, to exclude or eliminate individu-
als from the anemone, or for larger more dominant species 
to obtain a preferred or occupied anemone (Burke da Silva 
and Nedosyko 2016; Buston 2003). Competitive exclusion 
between anemonefish species for preferred hosts is thought 
to be a key factor influencing which associations are found 
between anemone hosts and the different anemonefish spe-
cies (Srinivasan 1999; Burke da Silva and Nedosyko 2016). 
The maroon clownfish (Amphiprion biaculeatus) is thought 
to be competitively dominant over all other anemonefish 
species (Srinivasan 1999) and is an anemone specialist only 
found in the anemone species E. quadricolor, the anemone 
in the mid-toxicity range. Similarly, other large anemone-
fish species such as A. melanopus are also generally found 
specializing in preferred mid-toxicity range host anemones, 
particularly when there is competition with other smaller 
anemonefish species on the same reef (Fautin 1986). As 
climate change continues to impact host quality and avail-
ability, it is likely that an increase in competitive exclusion 
by larger dominant anemonefish species may occur, leav-
ing smaller anemonefish species vulnerable to predation 
(Saenz-Agudelo et al. 2011; Scott and Hoey 2017; Hoepner 
and Fobert 2022).

19.3 � CURRENT HYPOTHESES AND OMICS 
APPLICATIONS TO UNCOVER THE 
MECHANISM BEHIND THE ANEMONE 
AND ANEMONEFISH SYMBIOSIS

Despite decades of research, the exact mechanism that 
enables anemonefish to live within the toxic environ-
ment of their host anemone has yet to be resolved. 

Several studies have found the mucus layer of anemone-
fish to be chemically different to that of other coral reef 
fish (Abdullah and Saad 2015; Balamurugan et al. 2015; 
Lubbock 1980), concluding that the anemonefish mucus 
layer may be the key to their protection. However, there 
are now new technologies available to help us investigate 
the mechanism(s) behind anemonefish resistance to anem-
one venom. Advancements in omics techniques such as 
genomics, transcriptomics, and proteomics will enable the 
exploration of this symbiotic relationship at a molecular 
level and may provide insights not previously attainable. 
In recent years, omics techniques have started to be used 
to tackle questions related to the symbiotic relationship 
between sea anemones and anemonefish, with a focus on 
metagenomics and genomics. Four main hypotheses have 
been proposed to explain how the anemonefish mucus 
layer can provide anemonefish with unique protection 
from the anemone venom. These hypotheses are summa-
rized in Table 19.2, and each is discussed in the following 
with a focus on areas where omics technologies have cur-
rently been applied.

19.3.1 �H ypothesis 1: Anemonefish Are Innately 
Protected from Anemone Venom

An early hypothesis was that anemonefish are born pro-
tected and therefore are innately immune to anemone 
venom (Elliot and Mariscal 1996; Miyagawa and Hidaka 
1980). This research focused on the anemonefish species 
A. clarkii, which is able to form associations with all ten 
species of host anemones and can enter anemones with 
little or no acclimation time (Miyagawa and Hidaka 1980). 
Through multiple laboratory experiments, focusing on a 
number of different anemonefish species, it was noted that 
fish require an acclimation period in order to fully enter 
and remain within a host anemone (Balamurugan et  al. 
2015; Brooks and Mariscal 1984; Mebs 1994; Davenport 
and Norton 1958; Mariscal 1970a). This acclimation 
period can vary between anemonefish species, ranging 
from minutes to days before the fish can comfortably exist 
within the anemone (Balamurugan et  al. 2015; pers obv; 
Miyagawa and Hidaka 1980). Anemonefish perform a 
range of specific behaviors – including touching anemone 
tentacles with their tail, biting the tentacle tips, and con-
tinuous fanning of tentacles with their pectoral fins – to 
acclimate and then enter the anemone (Balamurugan et al. 
2015). Furthermore, anemonefish also lose their protection 
when isolated from their anemone host for more than 21 
hours and are required to reacclimate (Mariscal 1970b). 
Overall, the experimental evidence clearly indicates that 
anemonefish require an acclimation period to form symbi-
osis with a host anemone. The acclimation period may acti-
vate the expression of novel genes that have been inherited 
from the one common anemonefish ancestor as the anem-
onefish species diversified (Litsios et al. 2012), allowing for 
the anemonefish to switch on their resistance to anemone 
venom.
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19.3.2 �H ypothesis 2: Anemonefish Have a 
Thicker Mucus Layer Than Other Fish

Another key hypothesis is that anemonefish have a thicker 
mucus layer than other coral reef fish species that cannot 
enter an anemone (Lubbock 1980). By having a thicker 
mucus layer, it is thought that the anemonefish are bet-
ter able to withstand the sting of the anemone, or that the 
nematocysts – the firing cells that deliver the anemones’ 
sting – are unable to penetrate the skin due to the mucus 
barrier. Lubbock (1980) showed that A. clarkii mucus was 
three to four times thicker than that of other coral reef 
fish species, but that there was no significant difference 
in mucus thickness when the anemonefish were associ-
ated with an anemone host (S. haddoni or E. quadricolor), 
compared to anemonefish separated from the anemone host 
for five months. As anemonefish are initially stung upon 
entering the anemone (Balamurugan et  al. 2015; Brooks 
and Mariscal 1984; Mebs 1994; Davenport and Norton 
1958; Mariscal 1970a) and the mucus thickness does not 
change with acclimation, it is unlikely that mucus thickness 
is the sole mechanism for anemonefish toxin resistance. 
Furthermore, only one of 28 species of anemonefish have 
been examined for mucus thickness; therefore it is currently 
unclear if all anemonefish species have thicker mucus lay-
ers than other coral reef fish.

19.3.3 �H ypothesis 3: Anemonefish 
Mucus Molecularly Mimics the 
Composition of Anemone Mucus

One of the most popular hypotheses is that the anemonefish 
cover themselves in anemone mucus to molecularly dis-
guise themselves and live undetected amongst the anemo-
ne’s tentacles, referred to as molecular mimicry (Schlichter 

1976; Elliot et al. 1994). It is proposed that the anemone-
fish cover their body in anemone mucus, thus inhibiting the 
firing of anemone nematocysts, via the same mechanism 
anemones use to recognize their own tentacles and prevent 
firing nematocysts at themselves. This is referred to as self-/
non-self-recognition and anemone antigens (proteins or 
peptides) are thought to be involved in this self-recognition 
process (Elliot et al. 1994).

A study by (Elliot et al. 1994) found that anemonefish 
(A. clarkii) living within an anemone host (H. crispa and 
S. haddoni) had anemone antigens in their mucus, whereas 
these anemone antigens were not found in the mucus of 
A. clarkii that were separated from the anemone and only 
sharing an aquarium separated by a partition. Previously, 
Pantin (1942) found that anemones did not fire nematocysts 
at food sources covered in their own mucus, whereas it has 
been shown that anemones will fire nematocysts when pre-
sented with the mucus of another anemone species (Ertman 
and Davenport 1981). This evidence suggests that molecular 
mimicry likely plays a role in anemonefish protection from 
their host anemone.

There are three ways in which anemonefish may acquire 
anemone peptides or proteins in their mucus: (1) anemone-
fish may cover themselves with a coat of the anemone’s 
mucus during brief contact with the anemone tentacles 
during the acclimation period; (2) some anemone surface 
antigens may be incorporated into the mucus coating of the 
anemonefish (Elliot et  al. 1994); or (3) anemonefish pro-
duce their own proteins, molecularly similar to anemone 
proteins that they embed in their mucus layer when in con-
tact with a host anemone. To date, there is no experimental 
evidence that discerns between these three possible mecha-
nisms behind the molecular mimicry that allows the anem-
one to recognize the anemonefish as self, facilitating their 
symbiosis. However, metagenomics studies have found that 

TABLE 19.2
Previous Research into the Mechanism behind the Anemonefish Symbiosis with Anemones Fits into Four 
Main Hypotheses

Hypothesis Status Reference Methodology

1a

b

Anemonefish are innately protected from 
anemone venom 

Rejected Miyagawa and Hidaka 1980 Forced contact

Elliot and Mariscal 1996 Forced contact

Anemonefish gain protection through an 
acclimation period 

Supported

Davenport and Norris 1958 Observation of behaviors

Mariscal 1970a, b Observation of behaviors

Brooks and Mariscal 1984 Acclimation time to surrogate anemones

Mebs 1994 Ichthyotoxic activity

Balamurugan et al. 2015 Observation of behaviors

2 Anemonefish have a thicker mucus layer 
than other fish

Insufficient evidence Lubbock 1980 Nomarski optics (A. clarkii)

3 Anemonefish mucus molecularly mimics 
the composition of anemone mucus

Insufficient evidence Schlichter 1976 Electrophoresis/radiolabelled mucus

Elliot et al. 1994 Antibody assays

4 Anemonefish mucus does not trigger 
firing of the anemone’s nematocysts

Insufficient evidence Lubbok 1980 Nematocysts per cm2

Abdullah and Saad 2015 N-acetylneuraminic Acid Detection
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the microbiome of anemone and anemonefish mucus can 
converge during association (Pratte et al. 2018; Roux et al. 
2019; Titus et  al. 2020), demonstrating the potential for 
microbial proteins to be involved in molecular mimicry or 
the facilitation of the symbiotic relationship.

19.3.3.1 � Omics Application: Metagenomics
Three recent studies have investigated the diversity of the 
mucus microbiome from anemonefish and their symbiotic 
sea anemone hosts (Pratte et al. 2018; Roux et al. 2019; Titus 
et al. 2020). All three studies found similar results, that the 
microbiomes of anemones and anemonefish were different 
when not in direct contact, and that direct microbial trans-
fer or a shift in diversity occurs, making the microbiomes 
more similar when anemonefish and anemones are in con-
tact. Specifically, Titus et al. (2020) found that the micro-
biomes of anemones (C. adhaesivum, E. quadricolor, H. 
aurora, H. magnifica, and S. mertensii) that were hosts to 
the same species of anemonefish (A. nigripes or A. clarkii) 
were more similar to each other than to that of anemones 
that were hosts to different species of anemonefish, or no 
fish at all. Pratte et al. (2018) also found that the microbi-
ome of A. clarkii reverted back to a pre-association state 
after removal from the anemone E. quadricolor. The study 
by Roux et  al. (2019) suggested that the convergence of 
microbiomes that occurred during anemone H. magnifica 
and the false clownfish (A. ocellaris) association could play 
a role in the establishment of their symbiosis. Bacteria in 
the mucus could allow for the transfer or processing of 
proteins and metabolites between the species, for example, 
to allow for the anemonefish to withstand the anemone’s 
venom (Roux et al. 2019). This gives support to the hypoth-
esis that anemonefish molecularly (or at least bacterially) 
mimic the anemone to disguise themselves amongst the 
anemone tentacles.

19.3.4 �H ypothesis 4: Anemonefish Mucus 
Lacks the Trigger for Firing the 
Anemone’s Nematocysts

The final key hypothesis is that the anemonefish mucus 
layer lacks the trigger for the anemone to fire nemato-
cysts. Lubbock (1980) qualitatively observed the behavioral 
response of Haddon’s anemone (Stichodactyla haddoni) to 
different mucus types on a glass rod (response categories: 
no response, poor response, strong response). Amphiprion 
clarkii mucus in contact with S. haddoni did not elicit a 
behavioral response (10/10) and A. clarkii mucus iso-
lated from a host anemone also did not elicit a behavioral 
response (37/45), whereas mucus from closely related dam-
selfishes elicited strong responses in all instances from 
S. haddoni – humbug damselfish (Dascyllus aruanus) 
(25/25), black-and-gold chromis (Paraglyphidodon nigro-
ris) (5/5), and blue-green chromis (Chromis caerulea) (5/5). 
Lubbock (1980) also found that there was no difference 
between the number of nematocysts fired by the anemone 
at gelatine-covered coverslips in the presence or absence 

of anemonefish (104 capsules/mm2) (Lubbock 1980), dem-
onstrating that anemonefish presence does not impact the 
ability of the anemone to fire nematocysts at external stim-
uli. There is no study to date that has quantified the nema-
tocyst firing response of a host anemone when presented 
with anemonefish mucus. However, the use of genomics has 
increased our understanding of the potential proteins uti-
lized in the prevention of nematocyst discharge.

19.3.4.1 � Omics Application: Genomics
A study by Marcionetti et  al. (2019) identified the first 
candidate genes that may have evolved to grant anemone-
fish protection from anemone venom. This study utilized 
whole-genome assemblies from ten anemonefish species 
(A. biaculeatus, A. ocellaris, A. perideraion, A. akallopi-
sos, A. polymnus, A. sebae, A. melanopus, A. bicinctus, A. 
nigripes, and A. frenatus) and applied molecular evolution-
ary analysis to uncover specific genes that were positively 
selected for during the evolution of symbiosis. Seventeen 
genes were identified as being under positive selection at 
the origin of anemonefish, which later switched to purify-
ing selection. When advantageous traits evolve, they are 
usually positively selected for and then there is a switch to 
purifying selection to maintain these traits in descendants 
(Marcionetti et al. 2019).

Versican Core Protein was one of the genes identified 
and is particularly interesting due to its link to the anem-
one nematocyst firing mechanism. Nematocysts are highly 
specialized cells that distribute the anemone’s venom by 
piercing the skin of predators or prey. The discharge of 
the nematocyst is controlled by chemosensory, mechano-
sensory, and endogenous pathways that respond to sensory 
stimulation (Anderson and Bouchard 2009). Anemones 
possess chemoreceptors for N-acetylneuraminic acid 
(Neu5Ac), a type of salic acid and a common carbohydrate 
side chain of glycoproteins found in fish mucus. Binding of 
the chemoreceptor to sugars in the mucus, specifically the 
acidic side chain of glycoproteins, triggers a multi-signal 
pathway that causes the nematocyst to fire (Anderson and 
Bouchard 2009; Ozacmak et al. 2001). Mucus from many 
coral reefs species has been shown to contain Neu5Ac; 
however, Neu5Ac has been found to be significantly lower 
in the mucus of A. ocellaris (Abdullah and Saad 2015). 
Abdullah and Saad (2015) found that A. ocellaris lacked 
Neu5Ac (1.6 mg/mL), in comparison to other non-symbi-
otic fishes such as the scissor-tailed sergeant (Abudefduf 
sexfasciatus) (50.4mg/mL) and moon wrasse (Thalassoma 
lunare) (71.9 mg/mL). Lubbock (1980) also showed that the 
mucus of A. clarkii was chemically different to other coral 
reef fish that are unable to enter host anemone species. The 
mucus of Clark’s anemonefish (A. clarkii) mainly consisted 
of neutral glycoproteins, which could be produced by a lack 
of an acidic side chain on the N-acetylated sugars that is 
normally present in fish mucus glycoproteins (Abdullah and 
Saad 2015). Versican core protein found to be expressed in 
the epidermis of A. ocellaris is thought to potentially bind 
to N-acetylated sugars, masking their detection by anemone 
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chemoreceptors and thus failing to trigger nematocyst fir-
ing. Protein O-GlcNAse was also found to be positively 
selected for, and this protein has the potential to cleave the 
acidic side chain creating a neutral glycoprotein that does 
not stimulate the anemone chemoreceptors (i.e., does not 
trigger) (Marcionetti et al. 2019) providing support for the 
hypothesis that anemonefish mucus lacks the trigger for 
anemone nematocyst firing.

19.3.5 �H ypotheses for Future Research

Of the hypotheses presented, only two hypotheses stand out 
as possible mechanistic explanations of anemonefish toxin 
resistance: firstly hypothesis (3), the anemonefish mucus 
molecularly mimics the composition of the anemone’s 
mucus to inhibit nematocyst firing, and secondly hypothesis 
(4), the anemonefish mucus does not trigger the firing of 
anemone nematocysts. While these two concepts may seem 
similar, we are defining (1) inhibits firing: as mucus prop-
erties that bind to receptors preventing the nematocysts’ 
firing (Elliot, Mariscal, and Roux 1994’ Lubbock 1980) 
and (2) does not trigger: as mucus composition that lacks 
the trigger to stimulate the anemone’s nematocyst firing. 
Ultimately, as the anemonefish need to perform acclima-
tion behaviors in order to enter the anemone, there must be 
a change in the anemonefish’s mucus at the molecular level. 
Moving forward in this chapter we will explore how lessons 
from venom research and toxin resistance in other species 
can be used as a model to better understand the anemone 
and anemonefish symbiosis and how omics have been used 
in these models and can inform future investigation into 
the potential mechanisms behind these hypotheses at the 
molecular level.

19.4 � LESSONS FROM OTHER MODEL SYSTEMS

To uncover the mechanism(s) that anemonefish use to with-
stand the anemone’s venom, we need to better understand the 
evolution of the anemone’s venom itself. Anemone venom is 
a complex and diverse mixture of a variety of toxic compo-
nents, including cytolysins (toxins that cause cell lysis), neu-
rotoxins (toxins that damage or impair the nervous system), 
and phospholipases (enzymes which cause inflammation 
and pain) amongst many others (Anderluh and Macek 2002; 
Frazao et al. 2012; Madio et al. 2019). Furthermore, cnidar-
ians (corals, anemones, and jellyfish) are the only organisms 
that do not have a centralized venom gland like other venom-
ous organisms (e.g., snakes); instead, the venom is produced 
in tissues throughout their body via nematocytes and ecto-
dermal gland cells (Madio et al. 2019). Nematocysts, which 
are found in the anemone tentacles, are highly specialized 
cells that venom is packaged into. Nematocysts consist of 
a capsule with an inverted tubule, which when triggered 
expels the tubule that disperses the venom by piercing the 
skin of predators or prey. The discharge of nematocysts is 
controlled by chemosensory, mechanosensory, and endog-
enous pathways that respond to external sensory stimulation 

(Anderson and Bouchard 2009). When predators or prey 
come into contact with the anemone, the anemone is able to 
chemically detect the response required and act accordingly. 
Ectodermal gland cells allow for the secretion of a larger 
volume of venomous mucus over the anemone, however, it is 
unclear if the venom composition of the mucus is the same 
or different to the venom packaged into the nematocysts 
(Madio et al. 2019), or if ectodermal gland cells are present 
in host anemones. While each component of the venom has 
a specific role, there are generally a few that contribute to the 
major lethality effect (Arbuckle et al. 2017). Potential sym-
biotic partners can benefit from this by attempting to evolve 
toxin resistance to the venom as a whole, rather than evolv-
ing resistance to each single component in the venom. This 
would enable partner species to selectively evolve resistance 
to the most lethal components or the most functionally simi-
lar elements, enabling multiple venom proteins to be treated 
as one for resistance purposes (Arbuckle et al. 2017).

While it is yet not clear how anemonefish are able to live 
within the toxic environment of anemones, we can look to 
other species and the mechanisms of toxin resistance uti-
lized for new research avenues to explore in the anemone and 
anemonefish system. Resistance to toxins has evolved on mul-
tiple occasions across a wide variety of phyla, from mammals 
to fish and insects (Arbuckle et al. 2017). There are three main 
mechanisms that have been put forward to broadly explain the 
evolution of toxin resistance (Holding et al. 2016; Arbuckle, 
Rodriguez de la Vega, and Casewell 2017):

	 (1)	Venom inhibitors: inhibitor proteins can inhibit the 
function of major toxic proteins found in venom 
through direct interaction, and are often members 
of large/old gene families. Venom inhibitors have 
been identified in at least 30 mammal species from 
six orders. Toxin-neutralizing serum factors, such 
as α1B-glycoprotein found in opossums and mon-
goose can neutralize snake venom metalloendo-
peptidases (SVMPs) and phospholipases (Holding 
et al. 2016; Voss and Jansa 2012). Venom inhibitors 
can also allow species such as snakes, for example, 
to be resistant to their own venom (Bastos et  al. 
2016). We know that anemones have self-recogni-
tion abilities which prevent the firing of nemato-
cysts when their tentacles touch (Elliot et al. 1994). 
Proteins may have potentially evolved in anemone-
fish that can be used to disrupt or prevent the firing 
of nematocysts thus working as venom inhibitors. 
Versican core protein (Marcionetti et al. 2019), 
may be an example of this as it is thought to  bind 
to N-acetylated sugars, masking their detection by 
anemone chemoreceptors.

	 (2)	Target alteration: toxic proteins found in venom  
bind to a receptor protein in a prey species to elicit 
a toxic action. Thus, a small number of amino acid 
mutations in the receptor protein found in the prey 
can change it such that the toxin can no longer 
bind, while the receptor protein still maintains its 
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original physiological function. Target alterations 
are often members of small gene families, or even 
encoded by single genes. In cobras, binding resis-
tance to alpha neurotoxins from snakes is caused 
by single amino acid substitutions that lead to gly-
cosylation of the target protein that then prevents 
the binding of the toxin (Takacs et al. 2001). The 
evolution of the protein O-GlcNAse gene and the 
expression of this protein in the anemonefish epi-
dermis potentially allow for the cleavage of the 
acidic side chain on glycoproteins in the anemone-
fish mucus (Marcionetti et al. 2019). This may be 
an example of target alteration as the nematocyst 
firing would no longer be triggered by the now 
neutral glycoproteins.

	 (3)	Repurposed toxins: is the binding of venom pro-
teins to an untargeted receptor, blocking the effects 
of the venom components that cause pain or other 
lethal actions. These can also occur with just a sin-
gle amino acid replacement (Arbuckle et al. 2017). 
Grasshopper mice, who eat and are often stung by 
scorpions, are the only known example of a spe-
cies that has evolved the use of repurposed toxins. 
This response results in the binding of the toxin 
to a downstream sodium channel rather than the 
targeted sodium channel, resulting in numbness 
in the mice rather than pain (Rowe et  al. 2013). 
Anemonefish go through an acclimation process 
to associate with the anemone, however, what 
exactly happens at the molecular level during this 
acclimation is currently unknown. Repurposing of 
toxins to untargeted receptors could be activated 
during this process resulting in anemonefish no 
longer feeling the sting of their anemone host.

In general, in predator/prey relationships, prey species 
often evolve a biochemical defence or resistance to a preda-
tor’s venom, triggering an increase in venom toxicity by the 
predator. Prey resistance will then also increase, resulting in 
a coevolutionary chemical arms race (Brodie III and Brodie 
Jr. 1999). In contrast, in a symbiotic relationship, where the 
aim is to maintain mutualistic benefit, a balance between 
maintaining venom toxicity level but still enabling a sym-
biotic partner to interact is important. However, the toxicity 
must remain at a level that can continue to benefit the toxic 
species. The anemone and anemonefish mutualistic rela-
tionship requires a balance of toxin resistance and venom 
strength, rather than an arms race of increasing toxin and 
resistance levels. Research by Nedosyko et al. (2014) sup-
ports this concept as they showed that host anemones with 
mid-range toxicity had the highest number of anemonefish 
associates, demonstrating that there is a trade-off between 
producing a venom that is too venomous or not venomous 
enough and being able to host anemonefish.

In recent years progress in deciphering the mecha-
nisms behind the anemonefish and anemone symbiosis has 
stalled, despite technological development. Just as we use 

anemonefish as a model species for other research appli-
cations, study into this symbiotic relationship may ben-
efit from the application of concepts and knowledge from 
venom transcriptomic and proteomic studies (Sunagar et al. 
2016; Madio, Undheim, and King 2017) and the study of 
evolution of toxin resistance in other species, particularly 
of prey to snake venoms (Gibbs et al. 2020).

19.5 � FUTURE USE OF OMICS

While researchers have begun to use omics to investigate 
a mechanistic explanation for anemone and anemonefish 
symbiosis, there is a wide array of omics techniques that 
could still be applied, particularly focusing on the fish 
mucus layer and how it acts to protect the anemonefish 
from the anemone venom. Fish mucus is comprised of a 
combination of proteins, lipids, and glycoproteins, all of 
which can be analyzed via omics to test the two leading 
hypotheses for the mechanism(s) behind this symbiosis: 
(1) hypothesis 3: anemonefish mucus molecularly mimics 
the anemone’s mucus and (2) hypothesis 4: anemonefish 
mucus prevents the nematocysts firing. For example, given 
the importance of glycoproteins for triggering nematocysts 
response in anemones (hypothesis 3), analyzing the mucus 
layer of anemonefish using glycomics could provide insight 
into the side chain structure of the glycoproteins present in 
the anemonefish mucus and would provide support for the 
genomic research by Marcionetti et al. (2019). Additionally, 
utilizing proteomics, proteins from the anemone mucus 
can be identified and matched to proteins in the anemone-
fish mucus after association, which could determine if the 
anemonefish molecularly mimic anemone mucus (hypoth-
esis 3). The merging of mucus microbiomes between anem-
ones and anemonefish during association suggests that it is 
possible that mucus molecular composition will also show 
similarities during symbiosis. Further proteomics and tran-
scriptomics studies of both fish and anemones under con-
trolled experimental conditions or in the wild could be used 
to look to see if proteins targeted by venom components 
are altered and/or whether toxins are able to bind to decoy 
receptors as discussed earlier as mechanisms of resistance 
to snake venoms, to explore the possibility of anemonefish 
deploying these strategies.

Previously, the research into anemone and anemonefish 
symbiosis has focused solely on the anemonefish and how 
they adapt to live in the toxic environment of their anemone 
host. As this is a mutualistic relationship where both anem-
onefish and anemone gain fitness benefits from their associ-
ation, the anemones’ role in the formation of this symbiosis 
should also be explored. A combined transcriptomic and 
proteomic approach is becoming more popular when study-
ing venom as it allows for a holistic view of venom com-
position (Madio et  al. 2017). Using this approach, Madio 
et al. (2017) discovered 12 new families of venom proteins 
and peptides in Haddon’s anemone (S. haddoni). Currently, 
research into anemone venoms focuses on novel toxin iden-
tification for drug discovery and medical applications, rather 
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than an ecological focus (Hoepner et  al. 2019); however, 
applying widely used techniques that explore drug discov-
ery to an ecological-based venom question could allow for 
the exploration of the mechanism behind the anemone and 
anemonefish symbiosis from a perspective not yet explored. 
For example, the bubble-tip anemone (E. quadricolor) is 
the most popular host of anemonefish (Nedosyko et  al. 
2014), yet research into its venom composition is very lim-
ited. A combined transcriptomic and proteomic approach to 
investigate the venom composition of E. quadricolor will 
allow for the comparison of the venom to other anemone 
hosts as well as non-host anemones and could identify 
potential unique features of the venom that lend itself to 
symbiosis with anemonefish. Analysis of venom before and 
after forming associations with anemonefish could also 
uncover any changes in the anemone venom or production 
that could enable or enhance the association with anemone-
fish. Omics is a promising field for investigating how anem-
onefish mucus layer interacts with anemone venom at the 
molecular level and closely interrogating hypotheses posed 
for future research.

19.6 � CONCLUSION

Despite decades of research, we are still exploring and 
discovering exactly how the anemonefish can withstand 
the venomous sting of their anemone hosts and live har-
moniously for mutual benefit. Of the numerous hypothe-
ses explored, there are two main frontrunners that could 
explain the mechanisms of anemonefish resistance to anem-
one venom: (1) hypothesis 3: the anemonefish mucus molec-
ularly mimics the composition of the anemone’s mucus to 
inhibit nematocyst firing and (2) hypothesis 4: the anem-
onefish mucus does not trigger the firing of anemone nema-
tocysts. These hypotheses do have areas of overlap and it 
may be a combination of both mechanisms that results in 
overall protection. The application of omics techniques, 
such as transcriptomics, proteomics, and metabolomics, as 
well as learnings from other model systems to this ecologi-
cal question, may provide the molecular insight needed to 
finally uncover the secrets behind the anemone and anem-
onefish symbiosis.
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