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Abstract 

There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relaps-
ing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The devel-
opment of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive 
MS is poorly understood.

The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with 
trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia 
and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, dur-
ing the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will 
review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate 
homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that 
regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. 
Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treat-
ment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor 
modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, 
such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
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Background
Multiple sclerosis (MS) is a chronic immune-mediated 
disease characterized by inflammation, demyelination, 
gliosis, and neurodegeneration in the central nervous sys-
tem (CNS) [1]. It is estimated that over 2.8 million people 
are living with MS worldwide [2] and the prevalence of 
MS is projected to increase over time [3]. There are over 

15 disease-modifying drugs (DMDs) approved over the 
last 20 years for the treatment of relapsing–remitting MS 
(RRMS), which is how about 85% of the MS population 
initially presents [4, 5]. However, there is only limited 
treatment choices available for the remaining 10–15% 
of people with primary progressive MS (PPMS) [4, 5]. 
Of those who present with RRMS at diagnosis, approxi-
mately 50–80% will continue to develop secondary pro-
gressive MS (SPMS) within one to two decades [4–6]. 
Unlike RRMS, the treatment options for SPMS are lim-
ited and are mainly restricted to those with active phase 
of SPMS characterized by new magnetic resonance imag-
ing (MRI) activity and relapses; clinical trials of DMDs 
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failed to show beneficial effects in non-active progressive 
disease [5].

The development and discovery of new drugs for the 
treatment of progressive MS (PPMS and SPMS) remains 
challenging due to several reasons. The pathophysiology 
of progressive MS remains poorly understood [7]. While 
the experimental autoimmune encephalomyelitis (EAE) 
model is widely used to study the immunopathogenesis 
of MS, this model has limited predictive potential for 
identifying therapies for progressive MS [8–10]. Micro-
glia and macrophages are found to be present in all MS 
lesions regardless of the phenotypes [8], and many mech-
anisms may define their contribution to neurodegenera-
tion [11]. The neurodegenerative roles of microglia and 
macrophages during the pathogenesis of MS is compli-
cated. For example, these cells are also required for the 
regeneration of lost myelin, a process known as remyeli-
nation [12–14]. Several DMDs have been shown to exert 
some modest effects either indirectly or directly on mac-
rophages or microglia, but no drugs for MS yet targets 
solely these innate immune cells [11, 15, 16].

In this review, we described the clinical aspects of 
progressive MS and the roles of microglia and mac-
rophages in progressive MS and neurodegeneration. We 
also described the types of DMDs approved for progres-
sive MS and the potential treatments in which there is 
involvement of microglia and macrophages.

Clinical aspects of progressive MS
Clinical course of MS
MS results in motor, sensory and cognitive deficits and 
is one of the leading causes of neurological disability in 
young adults [1, 17]. The MS disease course is heterog-
enous, with each person with MS experiencing different 
symptoms of various severities. MS is diagnosed with 
the criteria of clinical attacks, dissemination of lesions 
in space and time and the presence of cerebrospinal fluid 
(CSF)-specific oligoclonal bands. The clinical course 
of MS falls into four main categories: clinically isolated 
syndrome (CIS), RRMS, SPMS and PPMS [18, 19]. The 
RRMS, SPMS and PPMS phenotypes can be further clas-
sified based on two disease modifiers that assess disease 
activity and progression [20].

MS often presents with a monophasic clinical episode 
known as CIS, as many as 60–80% of those with MRI 
detected lesions go on to be clinically diagnosed with MS 
[21]. Roughly 85% of people with MS (PwMS) present 
with RRMS, characterized by disease activity of clinical 
relapses and MRI activity of gadolinium (Gd)-enhanc-
ing lesions or new or enlarging T2 lesions, followed by 
total recovery or partial recovery with periods of stabil-
ity in between relapses [20, 22, 23]. People with RRMS 
who have disease activity consisting of relapses or MRI 

activity are considered ‘RRMS-active’, while those with-
out disease activity are considered ‘RRMS-not active’ 
[20]. In 50–80% of people diagnosed with RRMS, there 
is a transition into SPMS within 10–20 years from initial 
diagnosis [4–6]. The average age of onset for RRMS is 
30 while it is between 40 and 50 for progressive MS [24, 
25]. SPMS is typically diagnosed retrospectively as there 
is no clear criteria to determine when RRMS transitions 
to SPMS [20, 26]. People with SPMS can be considered 
SPMS-active or SPMS-not active based on the presence 
of clinical attacks and MRI activity. In addition to disease 
activity, people with SPMS can be considered ‘SPMS-pro-
gressing’ or ‘SPMS-not progressing’ based on clinical evi-
dence of disease progression or confirmed accumulation 
of disability independent of relapses [20]. While women 
are typically affected with RRMS and SPMS more than 
men, with an approximate ratio of 3:1, PPMS affects both 
sexes equally [27, 28]. About 15% of PwMS are diagnosed 
with PPMS, presenting with progressive disability from 
the onset with no clear relapses and minimal to no recov-
ery [22, 23, 29]. Similar to SPMS, people with PPMS can 
be considered ‘PPMS-active’, ‘PPMS-not active’, ‘PPMS-
progressing’ or ‘PPMS-not progressing’ based on assess-
ment of disease activity and progression [20]. Taken all 
together, people with progressive MS can be classified as 
‘active with progression’, ‘active without progression’, ‘not 
active but with progression’, and finally, ‘not active and 
without progression’ [20]. Due to recent irregularities on 
how these terms are used by regulatory authorities, it is 
recommended that while ‘progressing’ is used to describe 
accumulated disability independent of relapses, ‘worsen-
ing’ should be used to describe any resulting increase in 
disability or impairment from relapses or increase in dis-
ability in the progressive phase [19].

The classification of the MS disease course is dynamic 
and is constantly revised, particularly to address the 
confusion that arises with the approval of new DMDs 
and updated regulations [19]. There are certain issues 
yet to be addressed with the current classification of 
MS disease courses. For example, RRMS and SPMS are 
widely used in clinical practice and research, yet there is 
no clear distinction between them as the conversion to 
SPMS is a process that occurs over several years and is 
only realized retrospectively [23, 26]. Some studies have 
shown that there is roughly a 3-year period of diagnostic 
uncertainty during the conversional phase from RRMS 
to SPMS [30, 31]. In addition, some people with RRMS 
exhibit progressive features of the disease and some peo-
ple with progressive forms exhibit relapses and new MRI 
activity. While relapses predominate in RRMS, clinically 
silent lesions occur during progressive MS, suggesting 
that lesion formation is not restricted to RRMS [32, 33]. 
Therefore, it is unclear if RRMS, SPMS and PPMS are 
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distinct types of MS, or if MS is a disease with a spec-
trum [23, 24, 34].

The current subtypes of MS are useful for clinical prac-
tice and research, but emerging models to classify MS 
subtypes are being developed to predict disability and 
relapse rate. These models, which include a topographical 
model and an MRI abnormality model, could be particu-
larly useful for grouping PwMS during clinical trials. The 
topographical model uses a real-time simulation software 
environment to define the dynamic changes of five differ-
ent factors during the course of MS: lesion localization, 
relapse frequency, relapse severity, relapse recovery, and 
baseline brain volume and progression rate [34, 35]. In 
this model, the CNS contains finite functional reserve, 
which is lowered during the course of MS. As func-
tional reserve declines, lesions present in clinically silent 
regions become uncovered. More work is required to 
identify the neurological substrate of functional reserve 
and how it is lost in progressive MS.

Eshaghi et  al. proposed three new subtypes of MS 
based on MRI abnormalities including changes in grey 
matter, normal appearing white matter (NAWM), and 
lesion load. These subtypes are termed cortex-led, 
NAWM-led and lesion-led [36]. Compared to cortex or 
NAWM-led, those categorized as lesion-led were shown 
to have higher disease activity, greater risk of confirmed 
disability progression, and improved response to treat-
ment in people with progressive MS. These considera-
tions may be beneficial during clinical trials to stratify 
participants or to predict disease activity, disability pro-
gression, and treatment response. They are also foun-
dations for developing validated models to be used as 
prognostic and therapeutic guides for individual patients.

Inflammation and demyelination in MS
MS is a disease largely dominated by inflammation and 
demyelination that causes tissue damage in the CNS. 
Although these processes are present in the early and 
progressive phases of MS, they can vary in severity [25]. 
The earlier phase of MS is dominated by a peripheral 
immune response characterized by the infiltration of 
lymphocytes into the parenchyma—the CNS tissue—
through a disrupted blood–brain barrier (BBB) leading to 
the formation of new active lesions [24, 25]. In contrast, 
the progressive phase of MS is characterized by the slow 
expansion of pre-existing lesions, and by a heightened 
innate CNS immune response with trapped immune cells 
behind a closed BBB or CSF brain barrier [7, 37, 38]. The 
integrity of the BBB can be assessed using MRI to detect 
uptake of Gd-based contrast agents that are administered 
into the blood prior to imaging [39]. These Gd-enhanc-
ing lesions decline until they can no longer be detected 
as people enter the progressive stages of MS [40]. At this 

point inflammation is compartmentalized in the CNS 
and it is thought that expanding lesions add new corti-
cal demyelination and damage to NAWM and normal 
appearing grey matter (NAGM) [24, 38], with new demy-
elination potentially occurring around CNS barriers such 
as the meninges. In addition to inflammation being more 
focal in the earlier phase of MS and diffuse in the pro-
gressive phases, inflammatory activity is more prominent 
in SPMS than PPMS as there is higher lesion cellularity 
and more perivascular cuffs in SPMS [23, 41].

In progressive MS, lymphocytic infiltrates consist-
ing of T and B lymphocytes, plasma cells, and mac-
rophages form lymphoid follicles in the CNS [32, 37, 
39, 42]. Lymphoid follicles, which are associated with 
more severe microglia activation and cortical demyelina-
tion, are found in large aggregates in the meninges and 
the perivascular Virchow–Robin spaces [24, 38]. They 
are typically found in 40–70% of people with SPMS, but 
not in people with PPMS; however, increased meningeal 
inflammation associated with more extensive cortical 
demyelination and neurite loss is present in PPMS, but 
without lymphoid follicles [43]. Meningeal-associated 
cortical lesions, or subpial lesions, are prominent in pro-
gressive MS [32, 38]. The formation of subpial lesions, 
often within layers I–IV [41, 44], are thought to be linked 
to meningeal inflammation based on their close prox-
imity [42, 44]. This pattern is also reproduced by in vivo 
MRI data and correlates with present and future dis-
ability [45]. PwMS with more cortical demyelination and 
lymphoid follicles have a more rapid MS onset, progres-
sion, and death [44, 46, 47].

While demyelination increases with disease duration, 
remyelination in PwMS is highly variable and declines 
with increase in age and disease duration [48]. For 
PwMS, a higher rate of remyelination is associated with 
lower disability progression [23, 49–51]. Remyelinated 
lesions in MS typically have thin myelin sheaths and 
short internodes, making them paler than normal, which 
is why they are referred to as shadow plaques [23, 52, 53]. 
In RRMS, shadow plaques are elevated in people younger 
than 55 or within the first 10 years of diagnosis [48, 51] 
compared to progressive MS where they are relatively 
sparse [23, 52, 54, 55].

CNS macrophages and progressive MS
Microglia and macrophages serve central roles in all 
stages of MS, and they are required for the initiation of 
experimental autoimmunity in animal models [56, 57]. 
These cells are so fundamental to MS disease, that they 
are largely the basis to define lesion types in MS patho-
logical specimens [58]. While microglia and macrophages 
generally have a more pathogenic phenotype in the MS 
CNS, the loss of critical homeostatic functions also 
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potentially contribute to increased damage and reduced 
repair in progressive MS. In the healthy CNS, homeo-
static functions in microglia include secreting growth 
factors that promote neuronal survival, surveilling the 
CNS to detect pathogens or tissue injury, and remodeling 
synaptic connections during development or following 
injury [59–65]. After demyelination, microglia and mac-
rophages also regulate remyelination [12, 13, 66, 67]. The 
role of remyelination has been reviewed elsewhere [51, 
68, 69]. In this section we described these cells and their 
involvement thus far in progressive MS.

Types of CNS macrophages
The normal adult brain contains four types of resident 
mononuclear phagocytes collectively called CNS mac-
rophages. CNS macrophages include microglia that are 
located throughout the brain parenchyma and three 
types of CNS border-associated macrophages (BAMs) 
that are located at the interface between the CNS and 
BBB [70]. BAMs consist of perivascular macrophages 
in the perivascular space between the endothelial and 
parenchymal basement membranes, meningeal mac-
rophages that line the meninges and its vasculature, and 
choroid plexus macrophages within the choroid plexus 
[70–72]. It should be noted that some research groups 
refer to BAMs as CNS-associated macrophages (CAMs) 
[73]. Despite their anatomical differences, there are simi-
larities in the development of microglia and BAMs [74]. 
Fate-mapping studies in mice have found microglia and 
BAMs largely originate from embryonic progenitors in 
the prenatal yolk sac that migrate to the brain for matura-
tion [70, 75–77]. Postnatal microglia and BAMs in mice 
are long-lived and self-renewing cells. Microglia, menin-
geal macrophages, and perivascular macrophages do not 
rely on circulating bone marrow-derived hematopoietic 
progenitors to replenish their population [70, 75, 78]. 
Only choroid plexus macrophages are partially replen-
ished by monocytes [70, 77].

Classification and activation of CNS macrophages
Among the CNS macrophages, the roles of microglia 
are the most well-characterized. In a surveilling state in 
the healthy CNS, microglia have small cell bodies with 
a complex highly branched ramified morphology. In a 
neuroinflammatory environment such as MS, micro-
glia become reactive, a process that includes transcrip-
tional, biochemical, and metabolic remodeling to take 
on new inflammatory functions [79–81]. Reactive micro-
glia swell and develop rounder cell bodies, taking on a 
simpler branching pattern with shorter and thicker cell 
processes [82, 83]. Microglia reactivity includes down-
regulation of many homeostatic genes, suggesting that 

there is an impairment and loss of critical homeostatic 
functions during MS that may worsen neurodegeneration 
during the pathophysiology of progressive MS [79, 84–
86]. There are several key genes that regulate microglial 
function. For example, Trem2 is a regulator of phago-
cytosis and chemotaxis, which are important defensive 
responses to inflammation and injury in MS [86, 87]. 
TREM2 is highly expressed by myelin-rich phagocytes in 
lesions of people with MS, and TREM2 agonists promote 
myelin debris clearance and enhance remyelination in an 
animal model of demyelination, suggesting TREM2 acti-
vation may be a promising therapeutic avenue in progres-
sive MS [88]. Related to Trem2 is Apoe, a gene critical for 
lipid metabolism following microglial uptake of myelin 
lipid debris. Apoe expression is upregulated in microglia 
isolated from mice with EAE and is correlated with dis-
ease progression [79]. Activation of the TREM2–APOE 
pathway prevents the ability of microglia to regulate CNS 
homeostasis in EAE [79]. Expression of Cx3cr1, a homeo-
static gene that encodes fractalkine receptor on microglia 
involved in synaptic pruning and modeling, is also lost in 
EAE [79]. Blocking the CX3CR1–fractalkine interaction 
induces microglial production of tumor necrosis factor 
(TNF)-α, a pro-inflammatory cytokine, and 8-isoprotane, 
a marker of oxidative stress [89]. Overall, while it is likely 
true that reactive microglia and macrophages with more 
pro-inflammatory phenotypes have large contributions 
to neurodegenerative processes during MS, the failure of 
microglia and macrophages to maintain reparative and 
homeostatic functions is also likely important to per-
petuate neurodegeneration during progressive disease. 
Reactive microglia and macrophages express very similar 
molecular markers, and in many experimental conditions 
they are indistinguishable [90]. For this reason, the blan-
ket term microglia and macrophage is used, which could 
also include BAMs.

Because microglia are highly dynamic, they transi-
tion through many intermediate morphological forms 
as they carry out reparative or pathogenic functions 
[82]. The response of microglia and macrophages to 
CNS disruption is diverse, but present during virtu-
ally all neurological conditions [91]. Upon sensing CNS 
disruptions such as tissue damage or pathogenic infil-
trations, microglia become rapidly reactive. When the 
disruption is localized, they extend processes to sites 
of damage [61, 92]. The extension of microglia towards 
a focal injury can occur in a P2Y12 receptor-depend-
ent manner, and it is in part regulated by extracellular 
adenosine triphosphate that is enriched after tissue 
injury [93, 94]. In this neuroprotective response, cell 
processes rapidly branch out to create a shield sur-
rounding the injury site where they phagocytose patho-
gens and apoptotic or damaged cell debris [95, 96].
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Microglia express over a thousand receptors, and likely 
respond to hundreds if not thousands of molecules that 
may drive their reactivity [97]. For example, microglia 
can also become reactive after toll-like receptor (TLR) or 
nucleotide-binding oligomerization domain-like recep-
tor-mediated recognition of damage-associated molecu-
lar patterns that are released following cellular injury and 
death in the CNS [98, 99]. This reactivity helps induce 
the inflammatory cascades that may perpetuate progres-
sive neurodegenerative mechanisms in MS [100]. Under 
certain circumstances, microglia and macrophages may 
also contribute to progressive neurodegeneration in MS 
by producing glutamate, proteases, and reactive oxygen 
and reactive nitrogen species (ROS/RNS) that may lead 
to demyelination, neuronal loss, and axonal and mito-
chondrial damage in lesions (discussed below) [101–
105]. Reactive microglia and macrophages also produce 
inflammatory cytokines such as TNF-α, interleukin (IL)-
6, IL-1β, and IL-23 that leads to further immune activa-
tion [104, 106–109]. People with progressive MS have 
elevated levels of these cytokines within blood serum, 
CSF, and CNS lesions compared to people with RRMS or 
healthy controls [110–112].

Microglia and macrophages are also necessary for 
remyelination and may have several other neuroprotec-
tive roles [12, 14, 68]. Microglia and macrophages help 
recruit and maintain oligodendrocyte progenitor cells 
(OPCs) and their ability to myelinate neurons [66, 67, 
113]. They secrete neurotrophic factors including insulin-
like growth factor-1 that are required for OPC survival 
and differentiation into oligodendrocytes [114–117]. In 
mice with EAE, microglia can also phagocytose and kill 
CNS-infiltrating Th17 cells [118].

The dichotomous functions of microglia and mac-
rophages have complicated the literature for decades. 
Protective and toxic functions were initially ascribed 
to different polarization states of microglia and mac-
rophages, the pro-inflammatory M1 and immunoregu-
latory M2 states [119]. Indeed, using transgenic mice 
with Nos2 based pro-inflammatory states and Arg1 
immunoregulatory states, Locatelli et al. examined these 
states during EAE. They found that cells could preferen-
tially express either Nos2 or Arg1, with the most Nos2-
enriched cells found prior to and at onset of disease 
inflammation [120]. Given that studies found microglia 
and macrophages can be polarized in culture with spe-
cific cytokines, this suggested these states may be impor-
tant to disease [12, 119–121]. However, both Arg1 and 
Nos2 are rarely expressed by microglia in MS models and 
do little to predict the microglia phenotype [80, 90, 120]. 
Monocyte-derived macrophages can express these mark-
ers differentially, but also take on several other cellular 
phenotypes suggesting greater diversity [122]. How the 

function of microglia and macrophages relate to their cel-
lular phenotypes during MS remains an open question.

The identity of BAM-specific markers can be used to 
distinguish BAMs from microglia. Like microglia, BAMs 
are highly plastic and change their expression patterns 
during disease, so they may be confused with reactive 
microglia [123, 124]. Only recently are new markers 
becoming available, so the exact roles of BAMs are not 
as well characterized [71, 72, 125]. Studies demonstrated 
that BAMs are involved in recruiting immune cells to 
sites of inflammation and scavenging debris [126, 127]. 
BAMs are located at the CNS border and help regulate 
immune cell entry and neuroinflammatory responses 
within the leptomeningeal space [128]. BAMs during 
neuroinflammation upregulate expression of molecules 
such as MHC class II and CD40 that are involved in anti-
gen presentation or co-stimulation, suggesting that they 
may regulate the activity of lymphocytes in the leptome-
ningeal space, perivascular space, or choroid plexus [84, 
129, 130]. However, experiments that eliminated the 
MHC class II antigen presenting capabilities of micro-
glia and BAMs found that these cells are not required 
for T cell-mediated EAE pathogenesis [124, 131–133]. 
Instead, it may be the antigen presenting capabilities of 
CNS-infiltrating myeloid cells, namely dendritic cells, 
that are involved in reactivating myelin-reactive encepha-
litogenic T cells towards a pro-inflammatory phenotype, 
thus inducing pathology in EAE. Overall, because most 
neuroimmunology studies have not made a distinction 
between BAMs, microglia, and infiltrating peripheral 
monocyte-derived macrophages, the exact contribution 
of BAMs to immune homeostasis of the normal CNS or 
MS pathophysiology is unclear.

CNS macrophages in MS pathophysiology
Microglia and macrophages are the major cell types in 
MS lesions [58, 134]. While they predominantly have a 
pro-inflammatory phenotype in active lesions indicated 
by expression of inflammatory markers such as CD40, 
approximately 70% also express more homeostatic 
markers [135]. In both human MS and mouse models, 
microglia and macrophages in early CNS lesions pro-
duce increased amounts of inflammatory factors such 
as nitric oxide (NO), TNF-α, and IL-1β. As they con-
tinue to phagocytose, process, and clear cholesterol-
rich myelin debris, they acquire a lipid-laden foamy 
phenotype that generally have more reparative anti-
inflammatory characteristics [120, 121, 136]. Myelin 
breakdown in phagocytes is thought to generate lipid 
and cholesterol metabolites that bind and activate liver 
X receptors (LXR), which modulates inflammation and 
helps facilitate the reverse cholesterol transport sys-
tem in microglia and macrophages [137–139]. Effective 
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LXR-mediated cholesterol efflux also increases produc-
tion of immunomodulatory factors such as IL-10 [136]. 
The ability of microglia and macrophages to efflux 
cholesterol-containing myelin debris decreases with 
age in mice [140]. The resulting cholesterol build-up 
forms crystals, leading to rupture of the lysosomes and 
activation of the inflammasome. Consequently, height-
ened microglia and macrophage inflammasome activity 
impairs remyelination in the CNS. Given that heighted 
inflammasome activity promotes neurodegeneration 
in other neurodegenerative conditions, the impaired 
efflux of cholesterol and subsequent inflammasome 
activation in microglia and macrophages may contrib-
ute to disability progression in PwMS [136, 140–142].

CNS macrophages in the MS brain
Study of CNS tissues from PwMS has enabled detailed 
pathological characterization of CNS macrophages 
in the MS brain. MS lesions have historically been 
characterized as active, chronic, or inactive based on 
the extent of demyelination. However, a more recent 
classification has proposed guidelines to distinguish 
lesions as active, mixed active–inactive, or inactive 
not only based on the presence or absence of ongoing 
demyelination, but also based on the characteristics of 
microglia and macrophages within the lesion [58]. The 
characteristics of microglia and macrophages in dif-
ferent MS lesion types are summarized in Fig.  1A, B. 
Most studies of MS lesions have used markers com-
mon to monocyte-derived macrophages, BAMs, and 
microglia such as IBA-1 and CD68. Markers such as 
TMEM119 provide better differentiation between 
microglia and recruited macrophages in MS lesions, 
although research groups have demonstrated Tmem119 
expression in microglia is reduced as they become reac-
tive [84, 90, 143]. Recent advancements in single-cell 
RNA sequencing have provided a better framework for 
differentiating BAMs and microglia using their gene 
expression patterns [70, 124]. However, the exact pro-
portions of microglia versus macrophages in MS lesions 
is largely undefined, because these cells are highly plas-
tic and there are no pathological studies that use new 
markers to distinguish BAMs from microglia.

Lesion composition
Active lesions  Active lesions are mostly found in peo-
ple with RRMS and shorter disease durations, and they 
can also be found in people with SPMS and PPMS with 
attacks and shorter disease durations [48, 58]. Active 
lesions are characterized by extensive demyelination and 
immune cell infiltration [58, 144]. Infiltrates contain T 
cells and B cells, but lipid-containing foamy microglia and 
macrophages are the major cell types in active lesions [37, 
48, 58, 134]. These activated microglia and macrophages 
can be closely associated with or engulfing damaged tran-
sected axons [145]. Active lesions are present in the white 
matter, but they are also prominent in the grey matter 
[58]. In the cerebral cortex, active lesions are frequently 
associated with meningeal inflammation, and lesion rims 
often have high densities of activated microglia and mac-
rophages containing myelin degradation products [37, 
146, 147]. Haider et  al. observed most neurons in these 
active cortical lesions had signs of oxidative damage 
[146]. In the deep grey matter, active lesions contain more 
inflammatory inducible nitric oxide synthase (iNOS)-
positive microglia and macrophages, which are potential 
sources of oxidative damage. Microglia and macrophages 
form borders around deep grey matter lesions, although 
to a lesser extent than white matter lesions [148].

Active lesions can be subdivided based on the stage 
of demyelination [58]. Early active lesions are partially 
demyelinated, they have ongoing demyelination, and they 
contain microglia and macrophages with major (larger) 
and minor (smaller) myelin proteins [48, 58, 149]. The 
number of early active lesions declines quickly with dis-
ease duration [48]. Microglia and macrophages in these 
lesions have a less homeostatic phenotype. For example, 
early active lesions contain microglia with no expression 
of P2RY12, a marker that is only expressed by homeo-
static microglia in rodents [79, 84]. Microglia and mac-
rophages closely associated with damaged axons produce 
high levels of glutamate, indicated by high expression of 
the glutamate synthesizing enzyme, glutaminase, which 
is not expressed by microglia in normal control white 
matter [144].

Late active lesions are more demyelinated than early 
active lesions, they still have ongoing demyelination, and 
they contain microglia and macrophages with only major 

Fig. 1  Summary of microglia and macrophages in different types of MS lesions. A Lesions are colored where a lighter grey indicates decreased 
myelin density. Reactive microglia and macrophages are depicted with large cell bodies and are categorized where red indicates decreased, 
and orange indicates increased expression of what are typically considered homeostatic markers such as P2RY12 or CD163. Reactive microglia 
and macrophages are also categorized based on whether they contain lipid-rich myelin degradation products. Non-reactivated microglia and 
macrophages are depicted with small cell bodies and a ramified morphology. B Patterns of microglia and macrophage characteristics (density, 
ramification, and homeostatic marker expression) over time in different MS lesion types. EA (D) early active (demyelinating), LA (D) late active 
(demyelinating), MAI (D) mixed active–inactive (demyelinating), MAI (PD) mixed active–inactive (post-demyelinating), I inactive. For A and B, active 
(post-demyelinating) lesions are not depicted due to limited histopathological assessments of microglia and macrophage characteristics

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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myelin proteins, which take longer to clear than minor 
myelin proteins [48, 58, 149]. Compared to early active 
lesions, microglia and macrophages in late active lesions 
transition to a more intermediate phenotype with both 
pro- and anti-inflammatory characteristics [84, 135, 150]. 
Kuhlmann et al. also classified a subset of active lesions 
that no longer have ongoing demyelination as active 
and post-demyelinating [58]. These lesions are heavily 
infiltrated by microglia and macrophages that lack both 
major and minor myelin proteins [58, 134].

Mixed active–inactive lesions  Mixed active–inactive 
lesions are most common in people with progressive MS 
with attacks or a disease duration longer than 10 years [48, 
58]. These lesions, also commonly referred to as “chronic 
active”, have an inactive demyelinated center defined by 
fewer reactive microglia and macrophages and a higher 
density of microglia and macrophages at the lesion rim 
[48, 58, 84, 145]. Mixed active–inactive lesions can also 
be classified as demyelinating or post-demyelinating [58]. 
Mixed active–inactive demyelinating lesions, also called 
“smoldering” or “slowly expanding”, have ongoing myelin 
loss at the lesion rim with microglia and macrophages 
that contain myelin degradation products [48, 58]. The 
rims of mixed active–inactive post-demyelinating lesions 
have microglia and macrophages that lack myelin degra-
dation products [58]. Microglia and macrophages in the 
center of mixed active–inactive lesions generally have a 
pro-inflammatory phenotype as they have high expres-
sion of glutaminase and low expression of immunomodu-
latory markers such as P2RY12 and CD163—a scavenger 
receptor that enhances phagocytosis and repair [84, 135, 
144, 150]. Some research groups have found microglia 
and macrophages in the lesion border express lower lev-
els of glutaminase and are more likely to express markers 
that indicate an immunomodulatory phenotype such as 
CD163 compared to those in the lesion center [144, 150]. 
However, other studies of mixed active–inactive lesions 
indicate borders tend to have increased expression of 
markers more characteristic of pro-inflammatory micro-
glia and macrophages such as CD40, CD64, CD32, and 
iNOS and have reduced expression of more homeostatic 
markers such as CD163 [84, 134, 135].

Inactive lesions  Inactive lesions are most common in 
people with SPMS without attacks or a disease duration 
longer than 15 years [48, 58]. Inactive lesions are exten-
sively demyelinated, have clear borders, and no ongoing 
myelin loss based on the absence of myelin debris within 
microglia or macrophages [58, 151]. The microglia and 
macrophage density is lower or similar compared to nor-
mal white, grey, and deep grey matter controls [48, 58, 84, 
148, 152]. These microglia and macrophages have a pre-

dominantly surveillant ramified morphology, they contain 
much less degraded myelin products, and some express 
homeostatic microglia markers such as P2RY12. Glu-
taminase expression is absent from microglia and mac-
rophages in inactive lesions [37, 84, 144, 151].

CNS macrophages in normal appearing CNS
Even though lesions are the major pathological hallmark 
of MS, PwMS also have alterations in the NAWM and 
NAGM compared to controls. The NAWM and NAGM 
is not associated with a greater density of microglia and 
macrophages in people with progressive MS compared 
to normal age-matched controls [37, 84]. However, the 
brains of people with progressive MS have significantly 
increased microglia reactivity in the NAWM and NAGM 
based on reduced expression of homeostatic microglia 
markers including P2RY12 compared to normal con-
trols; microglia reactivity increases with disease dura-
tion. Increased microglia reactivity in MS is associated 
with more diffuse NAWM injury including myelin loss 
and axonal damage [41, 43, 58, 84]. Clusters of reactive 
microglia termed microglia nodules may be present in 
over half of PwMS, and they are found in areas around 
plaques and in NAWM in progressive MS, but not nor-
mal controls [41, 151, 153]. These nodules have been 
associated with Wallerian degeneration of axons in early 
MS lesions, and may even occur prior to demyelination 
[153, 154].

Identifying increased CNS macrophage reactivity 
in the progressive MS brain
Recent advancements in positron emission tomogra-
phy (PET) imaging allow the visualization of radioligand 
binding to 18  kDa translocator protein (TSPO), which 
is a protein that is thought to be upregulated in reactive 
microglia and macrophages [155, 156]. PET studies have 
found increased binding of the first generation radio-
ligand 11C-PK11195 to TSPO in the NAWM, thalamus, 
and cortical grey matter of PwMS, particularly SPMS, 
compared to healthy controls [156–159]. The increase in 
total 11C-PK11195 binding in the cortex correlated with 
increased expanded disability status scale (EDSS) disabil-
ity scores and progression in SPMS but not RRMS [156, 
157]. Second generation radioligands such as 11C-PBR28 
with higher binding specificity and affinity for TSPO 
showed similar increases in signal, particularly in SPMS, 
that was associated with increased neurological disability 
and progression [160, 161]. People with SPMS also have 
greater overall TSPO expression throughout the grey 
matter compared to those with RRMS [161]. One limi-
tation of TSPO-PET imaging is that TSPO may not be 
specific only to reactive microglia as it is also expressed 
in some reactive astrocytes and vascular endothelial cells 
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[155, 162]. TSPO expression also does not differenti-
ate between human microglia stimulated in  vitro under 
pro-inflammatory or anti-inflammatory conditions [163]. 
As a result, there is a need for more microglia-specific 
TSPO-PET radioligands that can distinguish between 
inflammatory and homeostatic microglia phenotypes 
[39].

Based on TSPO-PET findings, microglia and mac-
rophage reactivity occurs early in the disease course of 
MS and escalates during progressive MS. TSPO-PET 
based microglia and macrophage reactivity predicts dis-
ease progression suggesting that these cells have impor-
tant roles in neurodegenerative processes, particularly 
during progressive disease.

Microglia and macrophage role 
in neurodegeneration
The etiology and mechanisms of neurodegeneration in 
MS remains an area of intense investigation. Over the 
years two paradigms have emerged to explain the etiol-
ogy of MS, the outside-in and the inside-out paradigms 
[164, 165]. The outside-in theory suggests that MS begins 
with CNS-targeted autoimmunity resulting in secondary 
neurodegeneration. On the other hand, the inside-out 
theory proposes that neurodegeneration is the primary 
event resulting in a secondary autoimmune response. 
Despite a century of studying MS, the true nature of the 
disease remains unknown. Much of what we know about 
neurodegeneration comes from cross sectional analysis 
of MS tissue and imperfect animal models of progressive 
MS creating a significant challenge in understanding the 
underlying mechanisms. For example, the EAE model 
is biased towards an autoreactive CD4 T-cell response 
while cytotoxic CD8 T cells are known to contribute to 
MS pathology. Given that many extracellular factors reg-
ulate microglia and macrophage enrichment and reac-
tivity during all disease stages, many mechanisms may 
define their contribution to neurodegeneration in pro-
gressive MS including the release of neurotoxic factors 
that may result in accumulation of mitochondrial injury 
and sustained pro-inflammatory cytokine production.

Extracellular factors regulating microglia 
and macrophages
Characteristic features of progressive MS pathophysiol-
ogy, including iron deposition, involvement of fibrinogen, 
and meningeal inflammation are likely important con-
tributors to the reactivity of microglia and macrophages, 
potentially contributing to neurodegeneration (Fig. 2).

Iron
Iron is essential in the normal functioning of the CNS and 
is highly enriched within myelinating oligodendrocytes 

[166–168]. Iron concentrations increase within the brain 
parenchyma during normal aging, but this is acceler-
ated in PwMS and is more pronounced in those with 
progressive disease courses [169, 170]. Iron levels within 
the brain are normally buffered by proteins such as fer-
ritin, which holds the non-toxic ferric form (Fe3+) of iron 
and is found within oligodendrocytes and microglia [32]. 
The release of excess iron during CNS demyelination is 
potentially directly neurotoxic due to increased extra-
cellular concentrations of unbuffered ferrous iron in the 
form of divalent cations (Fe2+), which amplifies oxidative 
injury via the Fenton reaction [171]. Unbuffered iron can 
also induce toxicity indirectly in culture as demonstrated 
by FeSO4 (a Fe2+ donor) stimulated microglia producing 
ROS at levels comparable to lipopolysaccharide (LPS—a 
TLR2/4 agonist from gram negative bacteria) stimulated 
microglia [169]. The presence of FeSO4 also exacerbated 
LPS-induced microglia-dependent neuronal loss [169]. 
The neuronal toxicity induced by iron and LPS-stimu-
lated microglia is prevented by inhibiting the ROS pro-
ducing enzyme, NADPH oxidase 2 [169], suggesting a 
potential role of iron in microglia mediated neurodegen-
eration. Iron is also immunomodulatory. Iron-deficient 
mice failed to develop EAE, while iron overloaded mice 
developed typical disease [172], suggesting that iron is an 
important regulator of immune-mediated neurotoxicity.

Analysis of MS tissue by MRI demonstrates that there 
is increased iron concentrations at the macroscopic level, 
specifically in the deep grey matter structures [167, 171, 
173]; these are the same structures that display atrophy 
even early in PwMS [32]. Following demyelination there 
is a shift in the distribution of iron; iron is increased in 
microglia and macrophages in areas surrounding plaques 
[174], but reduced within lesions [148, 175, 176] and the 
NAWM of PwMS [177–179]. The source of increased 
iron in microglia and macrophages is multifactorial and 
includes the death and damage to iron-rich oligoden-
drocytes, vascular damage, and infiltration of periph-
eral immune cells involved in systemic iron homeostasis 
[180]. Iron analysis by MRI has increased our knowl-
edge of the pathophysiology of MS, but tools such as 
magnetic resonance microscopy (MRM) are addressing 
the disconnect between small scale pathology of indi-
vidual cells and how this correlates with MRI data [181]. 
Using MRM, Nair et  al. visualized iron containing cells 
from post-mortem MS tissue and found that changes in 
iron accumulation within cells—mainly decreased iron 
within oligodendrocytes—give rise to the differential iron 
expression seen between cortical lesions and normal cor-
tex [181]. Taken together, this increased iron storage in 
microglia and macrophages or heightened free ferrous 
iron may contribute to ongoing neurodegeneration in MS 
by amplifying oxidative stress.
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Blood–brain barrier leakage
Leakage of the BBB occurs during inflammation to per-
mit leukocyte entry into the CNS, but lower levels of BBB 
leakage happen as a natural consequence of aging [182]. 
Disruption of the BBB allows elements from the blood—
not normally in the CNS—to enter such as fibrinogen. 
Fibrinogen entering into the CNS parenchyma is con-
verted into insoluble fibrin, which is a potent stimulus 

for microglia and macrophage reactivity [183–185]. In 
response to fibrin, microglia surround leaky blood ves-
sels and increase production of ROS [186]. A study by 
Yates et  al. demonstrated increased extracellular fibrin/
fibrinogen deposition in the cortex of people with pro-
gressive MS compared to healthy controls. Interest-
ingly, heightened levels of extracellular fibrin/fibrinogen 
was associated with reduced neuronal density, but not 

Fig. 2  Extracellular factors regulating microglia and macrophage reactivity in progressive MS. Many characteristic features of MS pathophysiology 
may lead to the microglia and macrophages reactivity. Accumulation of meningeal inflammation, including accumulation of B cells, T cells and 
macrophages, results in microglia and macrophages reactivity in the underlying cortex. Leakage of the BBB results in blood components such as 
fibrinogen leaking into the CNS. Once in the CNS, fibrinogen is converted to fibrin which acts as a potent stimulus of microglia and macrophages. 
Demyelination and death of iron-rich oligodendrocytes release excess iron into the extracellular space, which can in turn act as a stimulus for 
microglia and macrophages
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demyelination [187]. Reactive microglia surrounding 
fibrin deposits are observed in early MS and EAE dis-
ease, associated with axonal damage, and found prior to 
the formation of demyelinated lesions and T-cell infil-
tration [188]. Depletion of fibrin in animal models of 
MS resulted in reduced inflammation, reactive micro-
glia, demyelination, and axonal damage, suggesting the 
importance of protecting against fibrin-induced toxicity 
in PwMS [186, 189].

Meningeal inflammation
Widespread inflammation within the meningeal layers 
of the brain and spinal cord is found in all MS disease 
courses [190]. The formation of ectopic follicle-like struc-
tures in the meninges was found in 40% of SPMS cases 
[44]. The inflamed meninges contain macrophages and T 
cells, and the density of these cells was strongly associ-
ated with the microglia and macrophage density in the 
underlying subpial parenchyma [42, 191]. Indeed, the 
amount of meningeal inflammation correlates positively 
with cortical demyelination and neurodegeneration. The 
pattern of demyelination, neuronal injury, and axonal 
loss is greatest in the outer cortical layers and less pro-
nounced in inner layers, suggesting that meningeal asso-
ciated pro-inflammatory cytokine or neurotoxic factor 
radiate into the superficial grey matter to drive neuro-
degeneration [41–44, 46, 192]. These factors may induce 
direct toxicity or stimulate an indirect response in the 
CNS parenchyma that is degenerative.

Meningeal inflammation can induce neurotoxicity in 
the cortex and the underlying white and grey matter [44, 
192, 193]. Meningeal transduction of lentiviruses pro-
ducing IFN-γ and TNF-α cytokines induces demyelina-
tion, reactive microglia, neuronal loss, and upregulates 
genes related to necroptosis in the underlying grey mat-
ter [194]. Therefore, meningeal inflammation is sufficient 
to induce demyelination and neurodegeneration. Menin-
geal inflammation induces a phenotypic changes in cor-
tical microglia, and one phenotype characterized by 
low levels of homeostatic microglia markers P2Y12 and 
TMEM119 was associated with substantial neuronal loss 
[195]. How meningeal inflammation drives neurodegen-
eration and whether it is via microglia and macrophage 
mediated mechanisms during progressive MS is still an 
open question.

Release of neurotoxic factors by microglia 
and macrophages
Reactive oxygen and reactive nitrogen species
The direct release of neurotoxic factors including ROS or 
RNS, which are more pronounced in progressive MS, are 
one potential mechanism of microglia and macrophage 
mediated neurodegeneration in progressive MS [196]. 

In culture, when microglia are stimulated with LPS, they 
respond by increasing the production of ROS and RNS 
[197–199]. The main enzyme responsible for this ROS 
production for microglia is NADPH oxidase [197, 198]. 
Indeed, when microglia are cultured with immature oli-
godendrocytes and treated with LPS, there is a dramatic 
loss of immature oligodendrocyte that is prevented by 
inhibiting NADPH oxidase, suggesting that microglia 
ROS can be toxic in culture [197]. When treated with 
LPS, microglia also upregulate iNOS and produce RNS in 
culture [200, 201], but recent studies in vivo found that 
macrophage iNOS expression predominates, with limited 
microglial iNOS expression during EAE [90, 120, 202]. 
During EAE a greater proportion of macrophages than 
microglia also generate ROS, but both ROS-associated 
microglia and macrophages share a core oxidative stress 
signature [202]. The production of ROS by phagocytes 
during EAE results in injury to myelin and axons and is 
diminished with ROS and RNS scavengers [102, 203].

ROS and RNS can also contribute to neurodegenera-
tion by inducing mitochondrial dysfunction in neurons 
that persists and accumulates over time [204]. In progres-
sive MS, deep cortical neurons contain mutations within 
mitochondrial DNA [205]. MS lesions have significant 
mitochondria disturbances including decreased expres-
sion of electron transport chain complex I, III and IV 
[206–208], which correlates with axonal damage [209]. 
The corresponding energy deficiencies due to mitochon-
drial dysfunction amplify oxidative stress via the release 
of more oxygen radicals into the CNS [204]. Considering 
the high energy consumption the brain utilizes, impaired 
energy production due to mitochondrial dysfunction 
likely contributes to neurodegeneration. As a strategy to 
protect mitochondria from ROS—especially given the 
oxidative damage within MS lesions and within NAWM 
[210]—strategies that mitigate oxidative stress or reduce 
ROS production by microglia and macrophages are likely 
an important neuroprotective strategy for MS (Fig. 3).

Glutamate release
Glutamate is an excitatory neurotransmitter playing 
an important role in neuronal signaling, however when 
produced in large quantities it becomes toxic, result-
ing in damage to both neurons and oligodendrocytes 
[211–215]. Increased CNS glutamate was found prior to 
demyelination in PwMS [216], suggesting that it may be a 
precursor to the formation of MS lesions. A study look-
ing at cortex specimens from predominantly progressive 
MS cases found loss of glutamate reuptake mechanisms 
in astrocytes in the presence of reactive microglia [217]. 
Reactive microglia release cytokines such as TNF-α, 
which reduces astrocytic glutamate uptake through a 
pathway involving the release of NO, thus increasing 
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extracellular glutamate concentrations [218]. This 
increased extracellular glutamate is associated with 
demyelination and neuronal damage [217]. Increased 
extracellular glutamate in the CNS can also be a result 
of reactive microglia and macrophages, energy deficien-
cies, increased oxidative stress, and mitochondrial dys-
function [219]. Microglia can release glutamate via the 
cystine-glutamate antiporter system Xc

− [220, 221]. For 
this antiporter system, cystine is imported and serves as 
a co-factor for the antioxidant glutathione—potentially to 
serve as an antioxidant for the microglial oxidative burst-
ing [222]—resulting in the release of glutamate [223]. In 
culture, microglia release glutamate if supplemented with 
cystine or stimulated with LPS or the pro-inflammatory 
cytokines IFN-γ and TNF-α [220, 221, 224]. Microglial 
glutamate release is toxic to oligodendrocytes, which can 
be prevented by either treatment with glutamate receptor 
or system Xc

− transporter antagonists [220, 221].
Despite the release of toxic levels of glutamate by 

microglia in culture, less is understood about glutamate 
release from microglia and macrophages in  vivo. Injec-
tions of LPS with cystine in vivo is more toxic to neurons 

than LPS alone suggestive of system Xc
− transporter tox-

icity [225] and system Xc
− transporter antagonists are 

protective against EAE [220]. The removal of one gluta-
mate receptor subunit (the GluA4 from AMPA recep-
tor) from oligodendrocytes protects them during EAE, 
suggesting an ongoing glutamate toxicity during EAE 
[226]. However, T cells can release glutamate during EAE 
[227] and the system Xc

− transporters are expressed by 
astrocytes [228] and leukocytes [229]. The contribution 
of microglial glutamate is, therefore, still unclear as is the 
contribution of glutamate toxicity in later stages of pro-
gressive MS.

Sustained pro‑inflammatory cytokine production
In progressive MS there is increased microglia and mac-
rophages reactivity into a pro-inflammatory phenotype, 
which may contribute to neurodegeneration via a num-
ber of potential mechanisms. Pro-inflammatory micro-
glia activation results in a loss of immunosuppressive 
factors including CX3CR1 and CD200 and increased 
secretion of the pro-inflammatory cytokines IL-1β, IL-6, 
and TNF-α among other neurotoxic factors [230]. Given 

Fig. 3  Microglia and macrophage mediated mechanisms of neurodegeneration in progressive MS. Microglia and macrophages release many 
cytokines, including TNF-a, and IL-1β, which may contribute to neurodegeneration via cytokine induced cell death, inhibition of astrocytic 
glutamate reuptake, and via the induction of dysfunctional RNA binding proteins. Microglia and macrophages can also release glutamate, 
potentially contributing to glutamate excitotoxicity and neurodegeneration. Lastly, microglia and macrophages release ROS/RNS which may 
contribute to neurodegeneration by inducing oxidative stress and mitochondrial injury
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that microglia and macrophages express and release 
many cytokines in MS, individual or combinations of 
cytokines may induce neuronal toxicity.

TNF‑α
TNF-α is elevated in CSF of people with progressive MS 
compared to both RRMS and healthy controls [111]. 
TNF-α is expressed by microglia and macrophages 
during EAE and MS [90, 193, 202]. In culture, TNF-α 
induces oligodendrocyte cell death by necroptosis, a form 
of programmed necrosis that releases inflammatory mol-
ecules [231, 232]. Necroptosis is controlled by a protein 
cascade consisting of receptor-interacting seine/threo-
nine-protein kinase 1 and 3 and phosphorylated mixed 
lineage kinase domain-like pseudokinase; TNF-α stimu-
lated oligodendrocyte cell death was attenuated in the 
presence of a RIPK1 inhibitor [231]. In both the EAE and 
cuprizone models of MS, a RIPK1 inhibitor attenuated 
oligodendrocyte death and improved disease outcomes 
[231]. TNF-α can activate tumor necrosis factor recep-
tor 1 (TNFR1) resulting in a pro-inflammatory response 
inducing necroptosis, or, alternatively, stimulate tumor 
necrosis factor receptor 2 (TNFR2) promoting a protec-
tive response [233]. People with progressive MS have 
elevated TNF-α expression in the cortex and meninges 
which shifts the TNF receptor expression balance from 
a TNFR2 cell survival to TNFR1 cell death [193, 231]. 
TNFR1 signaling is enhanced within cortical and sub-
pial lesions associated with meningeal inflammation, and 
this signaling is linked to an upregulation of key necrop-
totic pathway regulators within neurons, oligodendro-
cytes, and microglia [231, 233, 234]. Therefore, TNF-α 
may be inducing necroptosis of neurons and oligoden-
drocytes within the CNS. Inhibition of soluble TNF-α, 
which has been found to signal via TNFR1 reduced the 
clinical severity of EAE while preserving axonal integrity 
and promoting remyelination [235]. Selective inhibition 
of TNFR1 ameliorated EAE symptoms in both prophy-
lactic and therapeutic treatments. Unselective anti-TNF 
therapy in PwMS resulted in a significantly increased risk 
of disease exacerbation, future therapies directed towards 
selective TNFR1 inhibition may prove to be beneficial in 
progressive MS [236].

IL‑1β
People with progressive MS have increased CSF and 
serum concentrations of IL-1β compared to both RRMS 
and healthy controls [110, 237]. Similar to TNF-α, addi-
tion of IL-1β in culture caused oligodendrocyte cell 
death [231, 232] and IL-1β is enriched in microglia, mac-
rophages, and neutrophils during EAE [90, 202, 238]. The 
loss of IL-1β reduces EAE susceptibility threefold, which 
is consistent with the pathogenic nature of this cytokine 

[238]. However, during EAE, IL-1β also interacts with 
barrier cells such as endothelial cells to alter leukocyte 
trafficking and damage may not be a result of direct IL-1β 
toxicity [238, 239]. Given that cytokines are instrumen-
tal in regulating trafficking into the CNS, it is challenging 
to determine whether the release of cytokines by micro-
glia and macrophages induce direct toxicity in the CNS, 
or indirectly provoke toxicity by recruiting pathogenic 
leukocytes. For example, the overexpression of granulo-
cyte–macrophage colony-stimulating factor in peripheral 
helper T cells, which is minimally expressed by microglia 
or macrophages during EAE [240], recruits ROS-asso-
ciated macrophages into the CNS that induce toxicity 
[241]. Combinations of cytokines can also induce toxic-
ity indirectly via astrocytes, for instance, IL-1β, TNF-α 
and C1q induce a neurotoxic astrocyte phenotype [242]. 
Taken together, disturbances in cytokine signaling can 
result in microglia reactivity and damage to neurons and 
oligodendrocytes, serving as a potential point of thera-
peutic intervention.

Cytokine induced RNA binding protein dysfunction
The CSF of people with progressive MS contains high 
levels of a number of pro-inflammatory cytokines 
including TNF-α and IFN-γ [110, 243, 244], which can 
result in the mislocalization of RNA binding proteins 
(RBP) within neurons and oligodendrocytes. Addition 
of TNF-α and IFN-γ in culture induce RBP mislocaliza-
tion and dysfunction [245, 246]. RBPs are responsible for 
maintaining RNA metabolism, including RNA transport, 
splicing, and stability. A single RBP is capable of modu-
lating the expression and function of multiple target 
RNAs, thus the dysfunction of a single RBP disrupts the 
regulation of many downstream RNAs. RBP dysfunction 
is characterized by mislocalization of these proteins from 
their homeostatic nuclear location to the cytoplasm; in 
severe cases RBPs are completely absent from the nucleus 
[246–249]. RBP cytoplasmic accumulation results in 
the formation of toxic aggregates of RNAs and proteins 
in addition to the loss of normal RBP functioning in the 
nucleus, which causes impaired RNA metabolism.

RBP dysfunction contributes to neurodegeneration in 
a number of diseases including MS [248–253]. The RBPs 
heterogenous nuclear ribonucleoprotein A1 (hnRNP A1) 
and transactive response DNA binding protein 43 (TDP-
43) are mislocalized within the ventral spinal cord neu-
rons during chronic EAE, which is correlated with axonal 
damage and neuronal loss [246, 247, 254]. Indeed, RBP 
cytoplasmic mislocalization and nuclear depletion are 
also present in cortical neurons and oligodendrocytes 
located in pathological specimens from PwMS [246, 
254, 255]. Analysis of cortical neurons from 6 control 
cases and 12 MS cases (6 progressive MS, 1 RRMS and 5 
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unknown disease courses) demonstrated significant mis-
localization of the RBPs hnRNP A1 and TDP-43, dem-
onstrating that dysfunctional RBPs may contribute to 
neurodegeneration in progressive MS as in other neuro-
logical diseases [255]. Taken together, pro-inflammatory 
cytokines can cause RBP dysfunction in neurons and oli-
godendrocytes, potentially contributing to ongoing neu-
rodegeneration. Given microglia and macrophages are an 
important source of pro-inflammatory cytokines and oxi-
dative stressors, they may trigger RBP dysfunction in MS.

Progressive MS therapies
Disease‑modifying drugs approved for progressive MS
While there are over 15 DMDs approved for the treat-
ment of RRMS over the last two decades, there are only 
limited therapeutic options currently available to treat 
progressive MS [4]. A range of beneficial and detrimental 
effects of microglia and macrophages have been reported 
in the models of MS [11, 15, 16], but drugs that solely 
target these innate immune cells are lacking. The recent 
treatment successes for progressive MS include sphingo-
sine-1-phosphate (S1P) receptor modulator (siponimod), 
B-cell targeted therapy (ocrelizumab), and selective 
immune reconstitution therapy (cladribine) [256], while 
mitoxantrone and beta-interferon were the first few 
drugs used for treatment of SPMS. In this section, we 
described several approved DMDs for the treatment of 
progressive MS (Fig. 4).

S1P receptor modulators
Siponimod is a S1P receptor modulator approved by 
the United States Food and Drug Administration (FDA) 
in 2019 and was the first oral DMD indicated to treat 

SPMS with active disease [257]. In the phase 3 EXPAND 
study, siponimod reduced the risk of 3-month confirmed 
disability progression by 21% compared with placebo 
and slowed the rate of brain volume loss over 12 and 
24 months in people with SPMS [258]. The main effects 
of siponimod are attributed to the functional antagonism 
of S1P1, which prevents the egress of peripheral lym-
phocytes from lymph nodes and diminishes their entry 
into the CNS [258, 259]. Siponimod binds selectively to 
the S1P1 and S1P5 receptors and these two subtypes of 
S1P receptors are also expressed in CNS-resident cells 
including microglia, astroglia, and oligodendrocytes 
[259]. Siponimod attenuated microglial release of the 
cytokines IL-6 and RANTES in cell culture and during 
EAE [259, 260]. IL-6 and RANTES are found in brain 
lesions and CSF of PwMS [261, 262]. Siponimod is cur-
rently only approved for active SPMS as the subgroup 
analyses from EXPAND study failed to show a statisti-
cally significant improvement in 3-month confirmed dis-
ability progression among people with no relapses in the 
previous 2 years [263].

Other S1P receptor modulators approved for the treat-
ment of MS to date include fingolimod and ozanimod. 
Fingolimod (not selective for specific S1P receptors) 
[264] is currently indicated only for RRMS as its phase 3 
clinical trial in progressive MS failed to demonstrate ben-
eficial effects [265]. Ozanimod has similar target recep-
tors (selective for S1P1 and S1P5) as siponimod and was 
recently approved by the FDA to treat relapsing forms of 
MS including active secondary progressive disease [266] 
based on results from phase 3 clinical trials (RADIANCE 
and SUNBEAM) [267, 268]. Ozanimod reduces microglia 
and macrophage pro-inflammatory cytokine expression, 

Fig. 4  Phase 2/3 clinical trial of drugs and DMDs approved for progressive MS. The registration numbers with clinicaltrials.gov are shown in brackets 
for drugs currently being assessed in phase 2/3 clinical trials as potential treatments for progressive MS. The references for the published findings 
are also indicated in brackets (if applicable)
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which may account its potential neuroprotective effects 
[269].

B‑cell depletion
Ocrelizumab is a B-cell depleting agent, and is the first 
DMD indicated to treat both RRMS and PPMS [270]. 
The safety and efficacy of ocrelizumab in PPMS had been 
shown in a phase 3 clinical trial (ORATORIO). The risk 
of 12-week confirmed disability progression was reduced 
by 24% in the ocrelizumab-treated arm compared to pla-
cebo [271]. Another B-cell depleting agent, ofatumumab, 
was also recently approved to treat both RRMS and active 
SPMS in the United States [272] based on the results 
from phase 3 clinical trials (ASCLEPIOS I and II) show-
ing lower annualized relapse rates in the ofatumumab-
treated arm compared to the teriflunomide-treated arm 
[273]. B-cells are associated with meningeal inflamma-
tion that overlie demyelinating cortical lesions, which 
involve a rise in microglia reactivity [274]. Several open-
label trials are underway to assess the treatment effect of 
ocrelizumab on CNS microglia reactivity as measured by 
TSPO-PET [275–277].

Immunosuppressants
Cladribine is a selective immunosuppressant and is 
approved to treat both RRMS and active SPMS in the 
United States [278]; it is only indicated for the treat-
ment of highly active RRMS in Europe [279]. The safety 
and efficacy of cladribine had been examined in a phase 
3 clinical trial (CLARITY) in people with RRMS [280], 
and a phase 2 clinical trial (ONWARD) in people with 
RRMS or SPMS with relapses [281]. The benefits of 
cladribine for the treatment of progressive MS remains 
to be explored in further clinical trials (ClinicalTrials.
gov NCT04695080, NCT04550455). In addition to lym-
phocyte depletion, cladribine can cross the BBB and 
exert effects directly on CNS cells. For example, primary 
microglia cultures treated with cladribine reduced gran-
ularity, phagocytotic ability and altered gene expression 
of microglia suggesting a less activated phenotype [282, 
283]. Cladribine also induces apoptosis in microglia cul-
tures [282].

Mitoxantrone is an immunosuppressant and was the 
first drug approved for SPMS and progressive-relapsing 
MS based on the results shown in phase 3 trial (MIMS) 
[284, 285]. The primary outcome comprised five clini-
cal measures including changes in the EDSS, ambula-
tion index, standardized neurological status, number of 
treated relapses, and time to first treated relapse [284]. 
PwMS treated with high-dose mitoxantrone (12  mg/
m2) improved on these five clinical measures compared 
to placebo over the short-term (2  years) clinical trial. 
However, there were concerns about the risk of cardiac 

dysfunction and acute leukemias with mitoxantrone 
treatment, as shown in studies with longer periods of 
follow-up [286]. The risk of cardiotoxicity also limits the 
long-term administration of mitoxantrone. Mitoxantrone 
can cross the BBB and is toxic to LPC-activated microglia 
in culture at high concentrations and at lower concen-
trations promotes the release of the immunoregulatory 
cytokine IL-10 [287].

Beta‑interferon
The treatment of SPMS and PPMS with beta-interferon 
has mixed findings. Beta-interferon was used as the first-
line treatment for SPMS given the worse risk–benefit 
profile with mitoxantrone [288]. The beneficial effects of 
beta-interferon on relapse-related outcomes (i.e., relapse 
rates) were shown in people with SPMS [289–292], while 
one out of the five studies found beneficial effects on 
short-term disability progression outcomes [288, 289]. 
La Mantia et al., following their systematic review of the 
literature, concluded that the anti-inflammatory effect of 
beta-interferon are not able to retard progression once 
it was established [288]. Similarly, clinical trials of beta-
interferon in PPMS failed to demonstrate beneficial effect 
on disability progression outcomes [293, 294].

Ongoing trials for progressive MS
There are several therapies being evaluated as a poten-
tial treatment option for progressive MS, such as immu-
nomodulatory therapies that can target myeloid cells 
(e.g., dimethyl fumarate, ibudilast, lipoic acid) or as a 
potential neuroprotective agent (e.g., simvastatin). Other 
examples of drugs currently being assessed in phase 2/3 
trials as potential treatments for progressive MS are 
listed in Fig. 4.

Dimethyl fumarate
Dimethyl fumarate is a nuclear factor (erythroid-derived 
2)–like 2 (Nrf2) activator and is currently approved for 
the treatment of RRMS [295, 296]. A single-center obser-
vational pilot study showed that the EDSS score of over 
75% of the 26 people with progressive MS treated with 
dimethyl fumarate remained stable or improved [297]. 
The safety and efficacy of dimethyl fumarate for use in 
PPMS is currently being assessed in a phase 2 trial (Clini-
calTrials.gov NCT02959658), although another phase 
2 trial of dimethyl fumarate in people with SPMS was 
terminated early by the pharmaceutical company (Clini-
calTrials.gov NCT02430532). Activation of the Nrf2 
antioxidant pathway by fumarates are neuroprotective 
in a chronic EAE model [298]. Nrf2, a target of dimethyl 
fumarate, is an important regulator of redox homeo-
stasis and responding to ROS [299]; ROS are important 
contributors to axonal damage in both MS and animal 
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models [300]. The synthesis of pro-inflammatory media-
tors such as iNOS, TNF-α, IL-1β and IL-6 are reduced 
in reactive microglia and astrocyte cultures pre-treated 
with dimethyl fumarate, suggesting that the neuroprotec-
tive effects of dimethyl fumarate may be attributed to its 
ability to inhibit expression of several neuroinflammatory 
mediators [301].

Ibudilast
Ibudilast is a non-selective phosphodiesterase inhibi-
tor. Ibudilast reduced the progression of brain atrophy 
(i.e., about 2.5 mL less brain-tissue loss) in a phase 2 trial 
(NN102/SPRINT-MS) for the treatment of PPMS or 
SPMS compared with placebo [302]. However, its use was 
associated with gastrointestinal and other adverse effects. 
A larger phase III trial is needed to further examine the 
safety and efficacy of ibudilast for progressive MS. Ibudi-
last can cross the BBB, and inhibits macrophage migra-
tion inhibitory factor, a pro-inflammatory protein mainly 
secreted from microglia and macrophages [90, 302–304]. 
Ibudilast suppresses production of NO, ROS, IL-1β, IL-6, 
and TNF-α, as well as enhances production of immu-
nomodulatory cytokines and neurotrophic factors in 
neuron and microglia cultures [305].

Lipoic acid
Lipoic acid is an antioxidant. The effects of lipoic acid on 
the annual percent change brain volume was assessed in a 
randomized controlled pilot trial [306]. Whilst there was 
a 68% reduction in annual percent change brain volume 
reported among people with SPMS treated with lipoic 
acid compared with those treated with placebo, the study 
was limited by small sample size (n = 27 in the lipoic acid 
arm and n = 26 in placebo) [306]. A phase II trial with 
over 100 participants is currently underway to examine 
the effects of lipoic acid on mobility and brain volume in 
progressive MS, and the results are expected to be avail-
able in 2021 (ClinicalTrials.gov NCT03161028). Given 
that microglia and macrophages predominate in pro-
ducing oxidative stress during EAE [202] and MS [101], 
antioxidants may be one means to limit potential ROS-
mediated toxicity. Lipoic acid inhibited microglia and 
macrophages reactivity and reduced the migration of T 
cells and monocytes across the BBB in EAE [307–309]. 
Lipoic acid also works by stabilizing the integrity of the 
BBB [309].

Masitinib
Masitinib is a selective tyrosine kinase inhibitor that 
provided therapeutic benefit for people with PPMS and 
relapse-free SPMS in a phase 2a clinical trial [310]. Pre-
liminary results of the phase 3 clinical trial of masitinib 
were presented at the recent MSVirtual Conference 2020 

and showed that the primary endpoint (changes in dis-
ability measured using the EDSS) was met, with reduced 
EDSS observed in the masitinib-treated arm compared 
to the placebo-treated arm [311]. The treatment effect 
was maintained for both the PPMS and non-active SPMS 
subgroups of the study population. Masitinib is the first 
tyrosine kinase inhibitor in this class of agents that tar-
gets the innate immune system by inhibiting mast cell 
activity [310, 311], that may contribute to EAE and MS 
[312]. Masitinib also inhibits CSF1R [313], a key receptor 
to promote microglia proliferation [314], and may there-
fore modulate innate immunity for people with MS. Posi-
tive results have also been reported from clinical trials 
of masitinib for the treatment of other neurological and 
inflammatory diseases such as rheumatoid arthritis and 
Alzheimer’s disease [315, 316].

Simvastatin
Simvastatin is an HMG-CoA reductase inhibitor, or sta-
tin, used for the management of hypercholesterolemia. 
Simvastatin when given in high dose (80  mg) showed a 
43% reduction in annualized brain atrophy among peo-
ple with SPMS compared with placebo in a phase 2 
clinical trial (MS-STAT) [317]. Here, simvastatin treat-
ment had a positive effect on frontal lobe function and 
physical health-related quality of life [318]. The effects 
of high-dose simvastatin on disability progression is 
currently being investigated in a phase 3 clinical trials 
with over 1000 people with SPMS (ClinicalTrials.gov 
NCT03387670; estimated study end date August 2023). 
The effects of statins on microglia function have been 
examined both in  vitro (i.e., microglia cell lines) and 
in  vivo (i.e., rat models) [319]. There are growing evi-
dence suggesting that statins diminish pro-inflammatory 
mediators that regulate the microglia reactivity [319]. 
Statins may provide protection in the CNS of progres-
sive MS by inhibiting microglia activation, restraining 
pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, 
ROS, IFN- γ, COX-2, PGE2, and RNS, but also by pro-
moting release of immunoregulatory cytokines such as 
IL-10 [319]. According to computational causal model-
ling, the beneficial effects of simvastatin in progressive 
MS might be independent of the change in serum cho-
lesterol levels, suggesting that the upstream intermediate 
breakdown products of the cholesterol synthesis pathway 
may be involved [320].

Treatment trials with negative results
Several other drugs have also been investigated for the 
treatment of progressive MS via neuroprotective and 
experimental approaches (e.g., amiloride, fluoxetine, rilu-
zole) or remyelination promoting approaches (e.g., bio-
tin, opicinumab), but showed negative results (Table  1). 
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For example, although the effects of high-dose biotin 
(MD1003) for the treatment of progressive MS shown in 
previous studies (pilot study and a phase 2 clinical trial) 
were encouraging [321, 322], the most recent phase 3 
clinical trial failed to demonstrate any significant differ-
ences in disease progression between biotin-treated and 
placebo-treated arms [323]. High-dose biotin is a co-
factor for essential carboxylases, which may help support 
myelin repair by enhancing the production of energy in 
neuron and it is generally well tolerated [323, 324]. Some 
studies suggested that the exposure to biotin was associ-
ated with new disease activity [325, 326]. Similarly, in an 
adequately powered multi-centre, multi-arm, phase 2b 
clinical trial (MS-SMART) based in the United Kingdom 
published recently, no significant differences in annual 
percent change brain volume were found among people 
with SPMS treated with placebo compared with each of 
the three active treatments (amiloride, fluoxetine and 
riluzole) [327], despite the positive effects shown in ear-
lier work (i.e., in animals and pilot studies) [328–333]. 
Other recent examples of drugs that had been studied 
but showed negative results are listed in Table 1.

Conclusion
Microglia and macrophages are both beacons for ongo-
ing damage in MS brains, but they are also key regu-
lators or contributors for ongoing neurotoxicity. New 
tools are defining an unappreciated diversity of these 
cells [80, 334, 335], but it is still unclear how this diver-
sity coincides lesion progression, grey matter damage 
arising from meningeal inflammation, or ongoing tis-
sue atrophy. Given the presence of reactive microglia 
in conjunction with these key pathological features 
of progressive MS, it is assumed the role of microglia 
and macrophages are significant. Yet it is still not pos-
sible to know whether these cells are merely respond-
ing to pathological stimulus or driving neurotoxicity. 
Perhaps the loss of critical microglial functions con-
tributes to progressive MS. These fundamental ques-
tions need answers to move the field of progressive MS 
forward. With much emphasis on the MS model EAE, 
which poorly models progressive MS, an expansion of 
MS models may help address these areas of research. 
In the clinical setting, numerous exciting clinical trials 
are ongoing, emphasizing the importance of treating 

Table 1  Studies with negative results based on most recent trial

Medication Relevant studies

Amiloride Positive results from open-label study (pilot study) [328]

Negative results from phase 2b clinical trial [317]

Biotin (MD1003, high dose) Positive results from three-centers study (pilot study) [321]

Positive results from phase 2 clinical trial [322]

Negative results from phase 3 clinical trial [323]

Dronabinol Negative results from randomized controlled trial [336]

Fingolimod Negative results from phase 3 clinical trial [265]

Fluoxetine Negative results from single-center study (pilot study with inadequate power) [337]

Negative results from phase 2b clinical trial [317]

Glatiramer acetate Negative results from randomized controlled trial [338]

Idebenone Negative results from phase 1/2 clinical trial [339]

Lamotrigine Negative results from phase 2 clinical trial [340]

Laquinimod Negative results from phase 2 clinical trial [341]

Lenercept Negative results from phase 2 clinical trial [342]

Lithium Negative results from open-label pilot study [343]

MBP8298 (dirucotide) Positive results in subgroup of participants from phase 2 clinical trial [344]

Negative results from phase 3 clinical trial [345]

MIS416 Negative results from phase 2 clinical trial from pharmaceutical company report [346]

Natalizumab Positive results from phase 2 clinical trial [347]

Negative results on sustained disability progression (positive results on upper-limb component of 
disability) from phase 3 clinical trial [348]

Opicinumab Negative results from phase 2 clinical trial [349]

Development of opicinumab has been halted by the pharmaceutical company (October 2020) [350]

Riluzole Positive results from pilot study [332]

Negative results from phase 2b clinical trial [317]

Rituximab Negative results from phase 2/3 clinical trial [351]
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progressive MS. With critical insight on the role of 
microglia and macrophages as they relate directly to 
MS pathogenesis new therapeutic targets are likely to 
be identified, fueling the pipeline for the benefits of 
people with progressive MS.
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