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Abstract

We present, to the best of the authors’ knowledge, all known results for
the (planar) crossing numbers of specific graphs and graph families. The
results are separated into various categories: specifically, results for gen-
eral graph families, results for graphs arising from various graph products,
and results for recursive graph constructions.
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1 Introduction

The crossing number of a graph is the minimum number of crossings over all possible
drawings of G. There are many subtleties to consider with this statement, such as,
what defines a crossing? What defines a drawing? In a broad survey on the variants
of crossing numbers, Marcus Schaefer discusses these subtleties in excellent detail
[171]. Here, we are focused only on the standard crossing number in the plane, and
as such, simplified definitions suffice. A graph G has the vertex set V (G) and edge set
E(G) and a drawing is a representation of G in the plane. Vertices are represented as
distinct points and each edge e = {u, v} is represented as a continuous arc connecting
the points associated with u and v in such a way that the interior of the arc does not
contain any points associated with vertices. In addition, the interiors of the arcs are
only allowed to intersect at a finite number of points and such that each intersection
is strictly a crossing between the edges, as opposed to the edges touching and then
not crossing. The intersections between the arcs are the crossings of the drawing
and the crossing number of a graph is denoted by cr(G) and is the minimum number
of crossings over all possible drawings of G. In what follows, when no confusion is
possible, we shall refer to the arcs and points given by a drawing as the ‘edges’ and
‘vertices’ of the drawing.

We do not attempt to survey the vast history of crossing numbers, which has
been recounted brilliantly in several places, including [171, 172, 14], but we briefly
mention three of the most influential lines of research which continue to inspire re-
searchers today. The first line of research is the initial work into the crossing number
of complete and complete bipartite graphs, which can be read about in [14]. The sub-
sequent development of Zarankiewicz’ Conjecture and the Harary-Hill Conjecture,
which both remain largely unsolved, continue to propel crossing numbers to the fore-
front of research in topological graph theory. The second line of research is Frank
Leighton’s development of new techniques for bounding the crossing number, includ-
ing the discovery of the famous Crossing Lemma [115]. Additionally, Leighton’s work
made an important connection between crossing numbers and VLSI design, and this
continues to attract valuable contributions from the computer science community.
The third line of research is Garey and Johnson’s proof that the crossing number
problem is NP-complete [48]. Specifically, the version of the problem described in
[48] asks whether a given graph has crossing number less than or equal to a given
integer k. As has been common with many NP-complete problems, this continues
to inspire research into the practical hardness of the problem as well as algorithmic
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approaches for computing crossing numbers.

To date, crossing numbers have only been determined for a small number of graph
families. For some other graph families, bounds have been established for which the
upper bounds are usually conjectured (but not proved) to be exact. In this survey,
we summarise all such published results for the standard crossing number in the
plane, along with references.

Our motivation for producing and maintaining this survey is threefold. The first
motivation is that there appears to be many pockets of active research occurring in
this area, but in many cases it seems that researchers in one pocket are unaware of
similar research being conducted in another. As a consequence, a number of results
have been proved multiple times by a number of different authors. Here, for the
first time, we gather all of these results, from the early research into this topic by
Richard Guy, to the extensive work on crossing numbers of graph products by Marián
Klešč, and the vast field of results published in the Chinese mathematical literature,
together in one document. Whenever possible, we have attempted to give credit to
the author who published the result first, as well as a summary of the partial results
that led to larger results. In cases where two sets of authors independently published
a result in the same year, we have credited both sets of authors.

The second motivation for this survey is to highlight the remaining gaps in the
literature, where results remain to be determined. These are perhaps best illustrated
by the various tables of results for Cartesian and join products of small graphs with
paths, cycles, stars and discrete graphs, which have been compiled from dozens of
individual publications, and for which some scant holes still remain. Our hope is
that this will help researchers to focus on the remaining unsolved problems in this
field.

The third motivation for this survey is to provide a comprehensive set of useful
instances for benchmarking purposes. One of the few benchmark sets which has been
repeatedly used in the crossing minimisation literature is known as the KnownCR
instances, which were originally collected by Gutwenger [52] in Section 4.3.2 of his
thesis. The KnownCR set of instances can now be expanded upon considerably for
use in future research.

Although, to the best of our knowledge, no other similarly extensive survey of
this kind exists, there are a number of other valuable resources regarding crossing
numbers. In particular, we make note of a few here: Since 2011, Marcus Schaefer
[171] has maintained a dynamic survey of different variants of the crossing number.
In 2018, Schaefer [172] also released an excellent book about various aspects of the
crossing number problem. For over a decade, Imrich Vrt’o [198] has maintained a very
extensive, but unannotated, bibliography of papers relating to crossing numbers; the
latest update came in 2014. A fascinating discussion of the history of the problem
was presented by Lowell Beineke and Robin Wilson in 2010 [14]. In 2005, Wynand
Winterbach [211] gave an excellent summary of the state of research into crossing
numbers at the time in his master’s thesis. In 2010, Yuanqiu Huang and Jing Wang
[78] published a survey paper in Chinese, with particular focus on results obtained
by Chinese authors.
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If one wishes to actually solve instances, Markus Chimani and Tilo Wiedera [22]
produced a mixed-integer linear program in 2016 that is able to compute crossing
numbers for small graphs, complete with a proof file, and produced an online inter-
face, Crossing Number Web Compute [23], where researchers can submit their own
instances. Alternatively, if a fast crossing minimisation heuristic is desired, we refer
readers to the crossing minimisation heuristics built into the Open Graph Drawing
Framework (OGDF) package [21], or alternatively to our algorithm, QuickCross [29],
which is available for download at http://fhcp.edu.au/quickcross.

Care has been taken to ensure no symbol is used to represent two different con-
cepts throughout this survey, even though in rare cases this means using non-standard
notation. These are pointed out as they occur. A full glossary of symbols used in
this survey is given in Appendix A.3.

Wherever practical, we have attempted to verify every result in this survey in the
following way: We have generated some moderate-sized instances from each family,
and used QuickCross to attempt to find a drawing with the proposed number of
crossings. In the vast majority of cases, the best result from QuickCross matched the
proposed number of crossings. In cases where QuickCross was able to find a drawing
with fewer crossings than proposed by a paper, that drawing itself is proof that the
result is incorrect. In cases where QuickCross was only able to find drawings with
more crossings than a result suggested, we searched for minimal counterexamples
using Crossing Number Web Compute. We have collated all of these incorrect results
in Appendix A.4, not as a means of disparaging the authors, but rather to ensure
that other researchers don’t use these results as basis for subsequent proofs.

As new results are being published frequently, our intention is to keep this survey
regularly updated, with the latest version always available at arXiv:1901.05155,
and periodic updates published in Australasian Journal of Combinatorics. We wel-
come any correspondence alerting us to results which we have either neglected to
include, or which have been discovered since the most recent update of this survey.
As a general rule, we only include results which have appeared in a peer-reviewed
journal other than in exceptional circumstances. Please send any such correspon-
dence to the corresponding author.

1.1 Asterisked results

In an attempt to include as many known results as possible, we have considered
results from any recognised journals or University periodicals. However, some of
these journals impose no peer review, or that which does occur is inadequate. As
such, the results contained within cannot be relied upon, either in their own right,
or as a basis for subsequent proofs. Indeed, we have encountered many such cases
where the proofs are either incorrect, or incomplete.

To address this, we have marked all results appearing within such journals with
an asterisk. We emphasise that this determination is solely based on the journal in
which the publication appears, rather than the quality of the publication itself. In
the case that the result has been subsequently proved in a fully refereed journal, we

http://fhcp.edu.au/quickcross
http://arxiv.org/abs/1901.05155
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have removed the asterisk and cited only the latter source. Again, marking results
in this way is not intended to disparage the authors, but rather to highlight results
which should be revisited and submitted to thorough peer review. Our hope is that,
in time, we will be able to replace all of the asterisked results in this way.

1.2 General results

Throughout this survey, we will only include results for specific graphs or graph
families. There are bounds for the crossing number of general graphs, which we
discuss briefly here.

For graphs with sufficiently many edges, the Crossing Lemma provides a lower
bound on the crossing number which depends upon a constant c. It was indepen-
dently discovered by Leighton [115] and Ajtai et al. (1982) [5]:

Theorem 1.1 (Leighton, 1983 [115], Ajtai et al., 1982 [5]) There is an abso-
lute constant c > 0 such that for every graph G with n vertices and m ≥ 4n edges,

cr(G) ≥ cm3

n2
.

The Crossing Lemma is tight, other than for the choice of c, and it was originally
shown that it holds for c = 1

100
. This was improved to 1

64
by Chazelle, Sharir and

Welzl in an email conversation summarised in [4]. Further improvements can be
found if the number of edges in the graph is increased. Pach and Tóth (1997) [153]
showed that c can be increased to 1/33.75 if m ≥ 7.5n. Later, Pach et al. (2006) [152]
improved this by showing that c can be increased to 1024/31827 (roughly 1/31.1)
if m ≥ 6.4375n. Montaron (2005) [142] determined various values of c depending
on the ratio of m and n. Finally, using a different approach, Ackerman (2019) [2]
showed that if m ≥ 6.95n, c can be increased to 1

29
.

In 2007, at an AMS special session in Chicago, Albertson stated a conjecture
about graphs with chromatic number n:

Conjecture 1.2 (Albertson, 2007) Consider any graph G with chromatic number
n. Then,

cr(G) ≥ cr(Kn).

The bound is obviously tight since Kn has chromatic number n. The result
is trivially true for n ≤ 4, since cr(Kn) = 0 for these cases. For n = 5, it is
equivalent to the four colour theorem. Oporowski and Zhao (2009) [147] verified the
case for n = 6. Albertson et al. (2010) [7] then further verified the conjecture for
n = 7, 8, 9, 10, 11, 12. Barát and Tóth (2010) [12] verified the cases n = 13, 14, 15, 16,
and Ackerman (2019) [2] verified the cases n = 17, 18. For n ≥ 19 the conjecture is
still open, although Ackerman [2] did show that for n = 19, counterexamples could
only exist for G containing either 37 or 38 vertices.
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1.3 Crossing critical graphs

A graph G is c-crossing-critical if cr(G) ≥ c, but every proper subgraph H of G has
cr(H) < c. Crossing critical graphs are an important family of graphs for which the
crossing number is known (or bounded) and they form a large topic on their own
with independent theoretical motivations. We direct the interested reader to [19] for
an overview of the results from the most influential line of research in this area. We
intend to include a more thorough discussion of crossing-critical graphs in a future
iteration of this survey.

2 Specific graphs and graph families

2.1 Complete multipartite graphs

The complete n-partite graph Km1,m2,...,mn is the graph on
∑n

i=1mi vertices defined
as follows. The vertices are partitioned into disjoint sets V1, V2, . . . , Vn, such that
|Vi| = mi for i = 1, 2, . . . n. An edge exists between two vertices precisely when one
vertex is in Vi and the other is in Vj where i �= j. An example of the complete
bipartite graph K4,5 is displayed in Figure 1 in two drawings; the latter drawing is
optimal with respect to the number of crossings.

The crossing numbers for complete multi-partite graphs are only known for a
small number of cases, however, a general upper bound is known and is due to
Harborth [63]. Harborth’s upper bound has matched all of the known exact crossing
numbers for these graphs thus far.

Theorem 2.1 (Harborth, 1970 [63]) For the complete n-partite graph Kx1,x2,...,xn

define s =
∑n

i=1 xi and c =
∑n

i=1(xi mod 2). Then the following holds:

cr(Kx1,x2,...,xn) ≤
1

8

( ∑
1≤i<j<k<�≤n

3xixjxkx� + 3

(⌊
c
2

⌋
2

)
−
⌊
c
2

⌋ ∑
1≤i<j≤n

i=j=0 (mod 2)

xixj

−
⌊
c−1
2

⌋ ∑
1≤i<j≤n

i �=j (mod 2)

xixj −
⌊
c−2
2

⌋ ∑
1≤i<j≤n

i=j=1 (mod 2)

xixj

)

+
n∑

i=1

⌊
xi

2

⌋ ⌊
xi−1
2

⌋ ⌊
s−xi

2

⌋ ⌊
s−xi−1

2

⌋
−
∑

1≤i<j≤n

⌊
xi

2

⌋ ⌊
xi−1
2

⌋ ⌊xj

2

⌋
�xj−1

2
�.

2.1.1 Complete bipartite graphs

One of the seminal results for crossing numbers was by Zarankiewicz, who attempted
to solve the crossing number problem specifically for complete bipartite graphs; this
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Figure 1: The complete bipartite graph K4,5, with the second drawing in the style
first described by Zarankiewicz.

special case is known as Turán’s brick factory problem. Zarankiewicz claimed to
have proved an exact bound [233], but his proof was subsequently found to contain
an error [54]. Nonetheless, the result of Zarankiewicz still provides an upper bound:

Theorem 2.2 (Zarankiewicz, 1955 [233]) The crossing number of the complete
bipartite graph Km,n is bounded as follows:

cr(Km,n) ≤
⌊n
2

⌋⌊n− 1

2

⌋⌊m
2

⌋⌊m− 1

2

⌋
.

Due to isomorphism, it is clear that cr(Km,n) = cr(Kn,m) and so in what follows,
we will assume that m ≤ n.

The upper bound has been shown to coincide with the true crossing number for
some small cases. In Guy’s [54] paper refuting Zarankiewicz’s proof, it was shown
that the result holds for m ≤ 4. In 1971, Kleitman [85] verified it for K5,n. In
1993, the cases of K7,7 and K7,9 were verified by Woodall [212] to coincide with
Zarankiewicz’s formula. In [54], it was shown that if the result holds for Km,n, such
that m is odd, then it holds for Km+1,n. Hence, Kleitman’s result also verifies K6,n,
and Woodall’s results also settle the cases K7,8, K7,10, K8,8, K8,9 and K8,10. Despite
detailing a flaw in Zarankiewicz’s proof, Guy conjectured that the result would still
hold in all cases and this has come to be known as Zarankiewicz’ Conjecture:

Conjecture 2.3 (Zarankiewicz, [233], Guy, 1969 [54]) Theorem 2.2 holds with
equality.

Several asymptotic lower bounds have been proved for complete bipartite graphs.
The earliest results by Kleitman [85] imply asymptotic lower bounds, and these were
improved upon in 2003 by Nahas [143]. In 2006, de Klerk et al. [32] used semi-definite
programming methods to make significant progress, which were refined in 2007 by
de Klerk et al. [33], who proved the following:
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Theorem 2.4 (de Klerk et al., 2007 [33]) For the complete bipartite graph Km,n

with m ≥ 9,

lim
n→∞

cr(Km,n)⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
m
2

⌋ ⌊
m−1
2

⌋ ≥ 0.8594m

m− 1
.

In 2013, Norin and Zwols [145] announced that the 0.8594 in Theorem 2.4 could
be replaced by 0.905, but this was never published.

In 2013, Christian et al. [25] gave a function N0(m) and showed that for each m,
if Conjecture 2.3 can be confirmed for all n ≤ N0(m), then it is true for all n. Hence
for each m, in order to confirm Conjecture 2.3, only finitely many cases need to be
considered. Unfortunately, the function N0(m) is not practical even for small m.

Theorem 2.5 (Christian et al., 2013 [25]) Let m be a positive integer. Define
N0(m) as follows:

N0(m) :=

(
(m!)!

(
2
⌊m
2

⌋ ⌊m− 1

2

⌋)m!
)4

.

If Conjecture 2.3 is true for all n ≤ N0(m), it is true for all n.

2.1.2 Complete tripartite graphs

Complete tripartite graphs have their vertices partitioned into three sets. An example
of K2,2,4 is displayed in Figure 2.

Figure 2: The complete tripartite graph K2,2,4.

The crossing number of Ka,b,n has been determined for all cases where a+ b ≤ 6,
except for K3,3,n. The known cases are listed in Table 1, along with the publications
where they were first discovered. Note that K1,1,n is planar. In a few cases, the veri-
fication came from the perspective of join products, since Ka,b +Dn = Ka,b,n, where
Dn is the discrete graph on n vertices. See Section 4 for more information and results
on join products. Ho was the first author to explicitly consider cr(K1,2,n), although
it could be seen as a direct consequence of results from some other authors. First,
P2�Sn is a subdivision of K1,2,n, and the crossing number of P2�Sn was determined
by Bokal (2007) [17]. Second, K1,2,n is a subgraph of P2 + Pn, and a supergraph of
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Table 1: Crossing numbers of complete tripartite graphs.

Graph family Crossing number Publication

K1,2,n

⌊
n
2

⌋ ⌊
n−1
2

⌋
Ho (2008) [73]

K1,3,n 2
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
Asano (1986) [10]

K1,4,n 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
Huang and Zhao (2008) [81]

K1,5,n 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋ ∗ Mei and Huang (2007) [141] ∗
K2,2,n 2

⌊
n
2

⌋ ⌊
n−1
2

⌋
Klešč and Schrötter (2011) [109]

K2,3,n 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ n Asano (1986) [10]

K2,4,n 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n Ho (2013) [76]

K3,n, both of which were shown to have crossing number
⌊
n
2

⌋ ⌊
n−1
2

⌋
by Klešč (2007)

[96] and Guy (1969) [54] respectively. The result for K1,4,n was also independently
proved by Ho (2008) [73].

In 2004, Ho [71] showed that cr(K3,3,n) can be determined if Conjecture 2.3 holds
for m = 7 and n ≤ 20. To date this is not known to be true, and so the crossing
number of K3,3,n can only be given as a conjecture.

Conjecture 2.6 (Ho, 2004 [71]) For n ≥ 1,

cr(K3,3,n) = 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 2

⌊
3n

2

⌋
+ 1.

There are some other results depending on the truth of Conjecture 2.3. In par-
ticular, Huang and Zhao (2006) [79, 80] proved that cr(K1,6,n) can be determined
if Conjecture 2.3 holds for K7,k for all k ≥ 1, and likewise that cr(K1,8,n) can be
determined if Conjecture 2.3 holds for K9,k for all k ≥ 1. In 2008, Wang and Huang
[203] proved that cr(K1,10,n) can be determined if Conjecture 2.3 holds for K11,k for
all k ≥ 1. Finally, Ho (2008) [73] generalised these results by showing the following.

Theorem 2.7 (Ho, 2008 [73]) If Conjecture 2.3 is true for K2M+1,n then,

cr(K1,2M,n) = M2

⌊
n + 1

2

⌋⌊n
2

⌋
−M

⌊n
2

⌋
.

Currently, Conjecture 2.3 is only known to hold for M ≤ 2.

In 2017, Gethner et al. [50] gave asymptotic lower bounds on the crossing number
of the balanced complete tripartite graphs Kn,n,n. Let A(n, n, n) denote the right
hand side of the inequality in Theorem 2.1, evaluated for Kn,n,n. Gethner et al. gave
asymptotic lower bounds involving A(n, n, n).
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Theorem 2.8 (Gethner et al. 2017 [50]) For the balanced complete tripartite
graphs Kn,n,n,

lim
n→∞

cr(Kn,n,n)

A(n, n, n)
≥ 0.666.

2.1.3 Complete 4-partite graphs

In 2016, Shanthini and Babujee [176] ∗ showed that the crossing number of K1,1,m,n

can be expressed in terms of the crossing number of Km+2,n+2:

Theorem 2.9 (Shanthini and Babujee, 2016 [176]∗) For m,n ≥ 1,

cr(K1,1,m,n) = cr(Km+2,n+2) +
⌊m
2

⌋ ⌊n
2

⌋
−mn. ∗

Since Zarankiewicz’s conjecture is known to hold for min{m,n} ≤ 6, Theorem 2.9
settles cr(K1,1,m,n) for m ≤ 4. Each of those four cases had been previously settled.
Specifically, the cases m = 1, 2, 3 were settled in 2007 by Qian and Huang [158] ∗,
and the case m = 4 was settled in a separate 2016 paper by Shanthini and Babujee
[175] ∗.

There are also some results known for other 4-partite graphs. In particular, He
and Huang [67] ∗ determined the crossing number of K1,2,2,n and Ho [74] determined
the crossing number of K2,2,2,n.

Theorem 2.10 (He and Huang, 2007 [67] ∗) For n ≥ 1,

cr(K1,2,2,n) = 4
⌊n
2

⌋ ⌊n− 1

2

⌋
+ n+

⌊n
2

⌋
. ∗

Theorem 2.11 (Ho, 2008 [74]) For n ≥ 1,

cr(K2,2,2,n) = 6
⌊n
2

⌋ ⌊n− 1

2

⌋
+ 3n.

2.1.4 Complete 5-partite graphs

In 2009, Ho [75] determined the crossing number for two 5-partite graphs:

Theorem 2.12 (Ho, 2009 [75]) For n ≥ 1, the following hold:

cr(K1,1,1,1,n) = 2
⌊n
2

⌋⌊n− 1

2

⌋
+ n,

cr(K1,1,1,2,n) = 4
⌊n
2

⌋⌊n− 1

2

⌋
+ 2n.



K. CLANCY ET AL. /AUSTRALAS. J. COMBIN. 78 (1) (2020), 209–296 221

2.1.5 Complete 6-partite graphs

In 2008, Lü and Huang [131] determined the crossing number of K1,1,1,1,1,n:

Theorem 2.13 (Lü and Huang, 2008 [131]) For n ≥ 1,

cr(K1,1,1,1,1,n) = 4
⌊n
2

⌋⌊n− 1

2

⌋
+ 2n +

⌊n
2

⌋
+ 1.

2.1.6 Complete bipartite graphs minus an edge

In 2011, He et al. [68] ∗ considered the complete bipartite graph Km,n minus one
edge, denoted asKm,n\e. Due to symmetry, it doesn’t matter which edge is removed.
They were able to settle the case when m = 3 or m = 4:

Theorem 2.14 (He et al., 2011 [68] ∗) For n ≥ 1, the following hold:

cr(K3,n \ e) =
⌊n
2

⌋⌊n− 1

2

⌋
−
⌊
n− 1

2

⌋
, ∗

cr(K4,n \ e) = 2
⌊n
2

⌋⌊n− 1

2

⌋
−
⌊
n− 1

2

⌋
. ∗

In 2015, Chia and Lee [20] gave a conjecture for larger m, and proved that in
addition to m = 3, 4, the conjecture is also true for the special case of K5,5 \ e:

Conjecture 2.15 (Chia and Lee, 2015 [20]) For m,n ≥ 1,

cr(Km,n \ e) = cr(Km,n)−
⌊
m− 1

2

⌋⌊
n− 1

2

⌋
.

2.2 Complete graphs

The complete graph Kn is the graph on n vertices containing an edge between every
pair of vertices. Two examples of complete graphs, K6 and K8, are displayed in
Figure 3.

Guy, in a 1960 paper [53], describes how the problem of determining the cross-
ing number for complete graphs was brought to his attention by Anthony Hill and
C.A. Rogers, but indicates that Paul Erdős had been looking at the problem for over
twenty years at that point. Guy gave an upper bound which is conjectured to be
equal to the crossing number, and showed that if the conjecture holds for odd n,
then it also holds for n+ 1.

Theorem 2.16 (Guy, 1960 [53]) The crossing number of the complete graph Kn

is bounded above as follows:

cr(Kn) ≤
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.
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Figure 3: The complete graphs K6 and K8.

Conjecture 2.17 (Guy, 1960 [53], Harary and Hill, 1963 [59])
Theorem 2.16 holds with equality.

Guy showed that Conjecture 2.17 holds for n ≤ 6. The same conjecture was also
proposed by Harary and Hill [59] at around the same time and then again four years
later by Saaty [165]. In 1972, Guy [55] showed that Conjecture 2.17 holds for n ≤ 10.
This was the best known result for more than three decades, until Pan and Richter
[154] proved in 2007 that the conjecture holds for n = 11, and hence for n = 12 as
well. The remaining cases are still open.

The case of n = 13 has been considered closely. McQuillan et al. (2015) [139]
noted that a simple application of Kleitman’s parity theorem [85] implies that cr(K13)
must be equal to one of the numbers {217, 219, 221, 223, 225}; McQuillan et al. then
proved that cr(K13) �= 217. This result was further improved by Ábrego et al. (2015)
[1] who showed that cr(K13) �= 219 and cr(K13) �= 221. Hence, there are only two
possibilities remaining for the crossing number of K13; either 223 or 225.

A similar approach as the asymptotic lower bounds for complete bipartite graphs,
provides asymptotic lower bounds for complete graphs. In 2019, Balogh et al. [11]
gave the current best version of this lower bound.

Theorem 2.18 (Balogh et al., 2019 [11]) For the complete graph K(n),

lim
n→∞

cr(Kn)
1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋ > 0.985.

The constant in Theorem 2.18 was an improvement on the previous work of Norin
and Zwols [145] and de Klerk et al. [33] who gave constants of 0.905 and 0.83 repec-
tively.

2.2.1 Complete graphs minus an edge

In 2007, Zheng et al. [239], considered the complete graph with a single edge removed,
Kn \ e. They determined an upper bound for its crossing number, and conjectured
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that it would coincide with the crossing number. They also proved that the conjecture
holds for n ≤ 8.

Theorem 2.19 (Zheng et al., 2007 [239]) For n ≥ 1,

cr(Kn \ e) ≤
1

4

⌊
n+ 2

2

⌋⌊
n− 1

2

⌋⌊
n− 3

2

⌋⌊
n− 4

2

⌋
,

with equality known to hold for n ≤ 8.

Conjecture 2.20 (Zheng et al., 2007 [239]) Theorem 2.19 holds with equality.

In 2014, Ouyang et al. (2014) [149] proved that Conjecture 2.20 holds for even n
whenever Conjecture 2.3 holds for n− 1. Hence, Conjecture 2.20 is currently known
to hold for n ≤ 12.

Chia and Lee [20] independently discovered results equivalent to the results in
[149] around the same time.

2.2.2 Complete graphs minus a cycle

In 1973, Guy and Hill [57] considered the crossing number of the complement of a
cycle Cn, that is, the complete graph Kn with a simple cycle of length n removed,
which is defined for all n ≥ 3. It is easy to check that Cn is planar for n ≤ 6. They
gave an upper bound for the crossing number of Cn in general, and conjectured that
equality would hold. Guy and Hill also proved that equality does indeed hold for
n ≤ 10.

Theorem 2.21 (Guy and Hill, 1973 [57]) For n ≥ 3, the following holds:

cr(Cn) ≤
{

1
64
(n− 3)2(n− 5)2, for odd n,

1
64
n(n− 4)(n− 6)2, for even n,

with equality known to hold for n ≤ 10.

Conjecture 2.22 (Guy and Hill, 1973 [57]) Theorem 2.21 holds with equality
for all n ≥ 3.

From the proof of Theorem 2.21, it is known that if the theorem holds for a
particular odd n, then it holds for the next even n as well.

Guy and Hill also determined a lower bound for the crossing number of Cn.

Theorem 2.23 (Guy and Hill, (1973) [57]) For n ≥ 9, the following bounds
hold:

cr(Cn) ≥
(
n
5

)
(n− 15)(n− 17)

4
(
n−4
3

) >
1

80
n(n+ 2)(n− 9)(n− 20).

Note that Theorem 2.23 is trivial unless n > 20.
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2.3 Circulant graphs

The circulant graph Cin(L) is the graph on n vertices such that, for i = 1, . . . , n
and each j appearing in the list L, vertex i is adjacent to the (i + j)-th vertex and
the (i − j)-th vertex (mod n). Two examples of circulant graphs, Ci10({1, 3}) and
Ci11({1, 4, 5}), are displayed in Figure 4. It is well known that Cin({1, 2}) is planar
for all even n and has crossing number 1 for all odd n. In what follows, we consider
circulant graphs for various choices of n and L.

Figure 4: The circulant graphs Ci10({1, 3}) and Ci11({1, 4, 5}).

In 1986, Fiorini [45] investigated the crossing number of Cin({1, 3}), primarily
as a vessel to establish the crossing number of certain generalized Petersen graphs.
While he claimed to have determined the crossing number of Cin({1, 3}) for n ≥ 8,
his proof was later shown to contain an error. Nonetheless, his proof established a
valid upper bound, and also established equality for n = 8, 10, 12:

Theorem 2.24 (Fiorini, 1986 [45]) For n ≥ 8, the following holds:

cr(Cin({1, 3})) ≤
⌊n
3

⌋
+ (n mod 3),

holding with equality for n = 8, 10, 12.

In 2004, Yang et al. [217] proved that equality does indeed hold for all n ≥ 8:

Theorem 2.25 (Yang et al., 2004 [217]) For n ≥ 8, the following holds:

cr(Cin({1, 3})) =
⌊n
3

⌋
+ (n mod 3).

In 2001, Yang and Zhao [220]∗ determined the crossing number of
Cin({1, �n/2�}) as follows:

Theorem 2.26 (Yang and Zhao, 2001 [220] ∗) For n ≥ 6, the following holds:

cr(Cin({1, �n/2�})) = 1. ∗
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For even n, Cin({1, �n/2�}) is isomorphic to the Möbius ladder graph on n ver-
tices, for which the crossing number was determined by Guy and Harary [56] in
1967.

In 2006, Lin et al. [127] considered the circulant graph Cin({1, �n/2�−1}). They
were able to determine the crossing number for even n ≥ 8, and discover upper
bounds for odd n ≥ 13:

Theorem 2.27 (Lin et al., 2006 [127]) For even n ≥ 8, the following holds:

cr(Cin({1, n/2− 1})) = n/2.

Theorem 2.28 (Lin et al., 2006 [127]) For odd n ≥ 13, the following holds:

cr(Cin({1, (n− 1)/2− 1})) ≤

⎧⎪⎪⎨
⎪⎪⎩

(n+ 1)/2, for n = 1 (mod 8),
(n+ 3)/2, for n = 3 (mod 8),
(n+ 3)/2, for n = 5 (mod 8),
(n+ 1)/2, for n = 7 (mod 8).

In 2005, Salazar [168] proved that the crossing number of Cin({1, k}) for k ≥ 5
and n ≥ k4 can be bounded above and below and by functions of n and k:

Theorem 2.29 (Salazar, 2005 [168]) For k ≥ 5 and n ≥ k4, the following bounds
hold:(

1− 4

k

)
n + (4k2 + 1− k3) ≤ cr(Cin({1, k})) ≤

(
1− 2

k

)
n +

k2 + k + 2

2
.

In 2005, Lin et al. [126] considered the circulant graph Cimk({1, k}), for integers
m ≥ 3, k ≥ 3. They were able to determine the crossing number for m = 3, and
established upper bounds for larger m:

Theorem 2.30 (Lin et al., 2005 [126]) For m, k ≥ 3, the following hold:

cr(Ci3k({1, k}) = k,

cr(Ci4k({1, k}) ≤ 2k + 1, and for m ≥ 5,

cr(Cimk({1, k}) ≤ min{(m− 2)(k + 1)− 1, m(k − 2)}.

In 2005, Ma et al. [136] considered the circulant graph Ci2m+2({1, m}) for m ≥ 2:

Theorem 2.31 (Ma et al., 2005 [136]) The following holds:

cr(Ci2m+2({1, m})) =
{
0, for m = 2,

m+ 1, for m ≥ 3.

In 2007, Ho [72] considered the circulant graph Ci3m+1({1, m}) for m ≥ 3:
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Theorem 2.32 (Ho, 2007 [72]) For m ≥ 3, the following holds:

cr(Ci3m+1({1, m})) = m+ 1.

In 2008, Wang and Huang [205] ∗ considered the circulant graph Ci3m−1({1, m})
and derived the following upper and lower bounds, and conjectured that the upper
bound would provide the correct crossing number.

Theorem 2.33 (Wang and Huang, 2008 [205] ∗) For m ≥ 3, the following
holds:

m ≤ cr(Ci3m−1({1, m})) ≤ m+ 1. ∗

Conjecture 2.34 (Wang andHuang, 2008 [205]) For m ≥ 3, the following
holds:

cr(Ci3m−1({1, m})) = m+ 1.

2.4 Generalized Petersen graphs

The generalized Petersen graphs were first studied by Coxeter [30] and later named by
Watkins [210]. The generalized Petersen graph GP (n, k) is constructed by taking the
union of the cycle graph Cn and the circulant graph Cin(k) (for which the definition
is given in Section 2.3) where n ≥ 3, and then connecting the corresponding vertices
in each by an edge. The result is a 3-regular graph containing 2n vertices, except
in the special case when n = 2k which corresponds to the Möbius ladder graph of
size n with the n/2 internal edges subdivided twice. Two examples of generalized
Petersen graphs, GP (9, 2) and GP (11, 3), are displayed in Figure 5. It is common in
the literature to use P (n, k), rather than GP (n, k), to denote generalized Petersen
graphs. To avoid confusion with path graphs, we use the latter here.

Figure 5: The generalized Petersen graphs GP (9, 2) and GP (11, 3).

A number of results are known about the crossing numbers of certain subfam-
ilies of generalized Petersen graphs. Due to symmetry, GP (n, k) is isomorphic to
GP (n, n−k), and so we only need to consider k ≤

⌊
n
2

⌋
. Some definitions of GP (n, k)
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also require that n ≥ 3. If we allow n = 1, 2, then GP (1, k) corresponds to the path
graph P1, and GP (2, k) to the cycle graph C4, irrespective of the choice of k.

The earliest result in this subsection is due to Guy and Harary (1967) [56], who
showed that the crossing number of any Möbius ladder graph is 1. Since GP (2k, k)
is a subdivision of a Möbius ladder, we have the following result.

Theorem 2.35 (Guy and Harary, 1967 [56]) For k ≥ 3, the following holds:

cr(GP (2k, k)) = 1.

GP (2k, k) is also known as the generalised Wagner graph, V2k.

In 1981, Exoo et al. [42] considered GP (n, k) for the special cases where k = 1, 2.
They showed the former were always planar, and for k = 2 they gave the following
theorem:

Theorem 2.36 (Exoo et al., 1981 [42]) The following holds:

cr(GP (n, 2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0, for even n,

0, for n = 3,

2, for n = 5,

3, for odd n ≥ 7.

In 1986, Fiorini [45] considered the crossing number of GP (n, k) for the special
case where k = 3, and settled the cases when n = 0 mod 3 and n = 2 mod 3. Fiorini
also claimed to have solved the special case of GP (10, 3), but the proof was later
refuted by McQuillan and Richter [140] in 1992, who also provided a nicer proof of
the special case of GP (8, 3). They conjectured the crossing number for the case when
n = 1 mod 3, which was later proved in 2002 by Richter and Salazar [162], who also
corrected some errors in Fiorini’s proofs, to settle the case where k = 3. The results
are summarised in the following theorem:

Theorem 2.37 (Fiorini, (1986) [45], Richter and Salazar, (2002) [162])
For h ∈ {0, 1, 2}, the following holds:

cr(GP (3m+ h, 3)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2, for h = 0, m = 3,

m, for h = 0, m ≥ 4,

3, for h = 1, m = 2,

m+ 3, for h = 1, m ≥ 3,

m+ 2, for h = 2, m ≥ 2.

For k = 4, Fiorini [45] also considered the crossing number of the special case of
GP (4n, 4), while in 1997 Saražin [170] settled the special case of GP (10, 4).
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Theorem 2.38 (Fiorini, 1986 [45]) For n ≥ 4, the following holds:

cr(GP (4n, 4)) = 2n.

Theorem 2.39 (Saražin, 1997 [170]) cr(GP (10, 4)) = 4.

In 2009, Lin et al. [128] then settled every remaining graph for n ≤ 16 (see the
upcoming Table 2), and gave some conjectures for two remaining cases:

Conjecture 2.40 (Lin et al., 2009 [128]) For k ≥ 3, the following hold:

cr(GP (4k + 2, 2k)) = 2k + 1,

cr(GP (4k + 2, 4)) = 2k + 2.

The known crossing numbers of GP (n, k) for n ≤ 17 are summarised in Table 2
and Appendix A.2.1 lists the publications where these results were first proved.

Table 2: Crossing numbers for GP (n, k), 5 ≤ n ≤ 17. For n ≤ 4, GP (n, k) is
planar. Appendix A.2.1 lists the publications where these results were first proved.
The numbers in this table (other than for n = 17) were first collated by Lin et al.
[128].

n
5 6 7 8 9 10 11 12 13 14 15 16 17

k

1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 0 3 0 3 0 3 0 3 0 3 0 3

3 1 3 4 2 6 5 4 7 6 5 8 7

4 1 3 4 5 4 7 8 10 8

5 1 3 8 9 6 5 8

6 1 3 7 10 12 7

7 1 3 9

8 1 3

There are also some results for arbitrarily large k. In 2005, Ma et al. [135] settled
the case for GP (2k + 1, k) for k ≥ 3:

Theorem 2.41 (Ma et al., 2005 [135]) For k ≥ 3, the following holds:

cr(GP (2k + 1, k)) = 3.

In 2003, Fiorini and Gauci [46] settled the case for GP (3k, k) for k ≥ 4:

Theorem 2.42 (Fiorini and Gauci, 2003 [46]) For k ≥ 4, the following holds:

cr(GP (3k, k)) = k.
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In 2019, Gauci and Xuereb settle the cases for GP (3k − 1, k) and GP (3k + 1, k)
for k ≥ 3.

Theorem 2.43 (Gauci and Xuereb, 2019 [49]) For k ≥ 3, the following hold:

cr(GP (3k − 1, k)) = k + 1,

cr(GP (3k + 1, k)) = k + 3.

For general GP (n, k) with k ≥ 5, there are also lower and upper bounds known.
In particular, in 2004, Pinontoan and Richter [156] determined bounds for k ≥ 6 and
n ≥ 2k + 1:

Theorem 2.44 (Pinontoan and Richter, 2004 [156]) For k ≥ 6, n ≥ 2k + 1,
there exists a nonnegative constant ck such that:

nk

3
− ck ≤ cr(GP (n, k)) ≤ 2n− 4n

k
+ ck.

Also, in 2005, Salazar [168] derived bounds via a different approach for n ≥ k
and k ≥ 5:

Theorem 2.45 (Salazar, 2005 [168]) For n ≥ k ≥ 5, the following bounds hold:

2

5

[(
1− 4

k

)
(n− k4)

]
+ (4k2 + 1− k3) ≤ cr(GP (n, k)) ≤

(
2− 2

k

)
n +

k2 + k + 2

2
.

2.5 Path powers

Consider the path graph Pn on n + 1 vertices. The graph P k
n , called the k-power of

the graph Pn, is a graph on the same vertex set as Pn. An edge {a, b} exists in P k
n if

and only if the distance between a and b on Pn is at most k. Two examples of path
powers, P 2

6 and P 3
6 , are displayed in Figure 6.

Figure 6: The path powers P 2
6 and P 3

6 .

The crossing number of P k
n is known for some values of k. First, if k ≤ 3, then

P k
n is planar. If k = n, then P k

n is isomorphic to Kn; see Section 2.2. If k = n − 1,
then P k

n is isomorphic to Kn minus an edge; see Section 2.2.1.

At this point the only other case which has been fully settled is k = 4, which was
considered in 1993 by Harary and Kainen [60]:
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Theorem 2.46 (Harary and Kainen, 1993 [60]) For n ≥ 5, the following holds:

cr(P 4
n) = n− 4.

In 1999, Harary et al. [61] extended this result by providing lower and upper
bounds for P 5

n .

Theorem 2.47 (Harary et al., 1999 [61]) For n ≥ 6, the following bounds hold:

2n− 9 ≤ cr(P 5
n) ≤ 4n− 21.

In 2009, Zheng et al. [242] gave some upper bounds for higher powers, and con-
jectured that they would coincide with the exact crossing number. These results are
listed in Table 3.

Table 3: Results for paths of higher powers, from [242].

cr(P 5
6 ) = 3 cr(P 5

7 ) = 6 cr(P 5
8 ) = 9 cr(P 5

n) ≤ 4n− 23, for n ≥ 9

cr(P 6
7 ) = 9 cr(P 6

8 ) = 15 cr(P 6
9 ) ≤ 22 cr(P 6

n) ≤ 8n− 51, for n ≥ 10

cr(P 7
8 ) = 18 cr(P 7

9 ) ≤ 30 cr(P 7
10) ≤ 42 cr(P 7

11) ≤ 57

cr(P 7
n) ≤ 15n− 109, for n ≥ 12

Conjecture 2.48 (Zheng et al., 2009 [242]) All upper bounds in Table 3 hold
with equality.

2.6 Knödel graphs

The Knödel graph WΔ,n, for even n ≥ 2 and 1 ≤ Δ ≤ �log2 n� is the graph on n
vertices which is defined as follows. The vertices are labelled (i, j) where i = 1, 2
and 0 ≤ j ≤ n

2
− 1. For every j, there is an edge between (1, j) and every vertex

(2, (j + 2p − 1) mod (n/2)) for p = 0, . . . ,Δ − 1. An example of the Knödel graph
W3,10 is displayed in Figure 7.

Zheng et al. [241] considered the special case of W3,n, for even n ≥ 8, and deter-
mined the crossing number in all cases:

Theorem 2.49 (Zheng et al., 2008 [241]) The following holds:

cr(W3,n) =

⎧⎪⎨
⎪⎩
0, for n = 8,

1, for n = 10,⌊
n
6

⌋
+ (nmod 6)

2
, for even n ≥ 12.
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Figure 7: The Knödel graph W3,10.

2.7 Flower Snarks

Snarks are simple, connected, bridgeless cubic graphs with edge chromatic number
equal to 4. Most definitions also demand that Snarks have girth at least five. The
Flower Snarks are an infinite family of Snarks discovered by Isaacs [82]. The following
construction is valid for any n ≥ 3, but only odd n ≥ 5 yield Flower Snarks. The
results encompass both constructions from odd and even n and collectively we shall
denote the graphs as In. In particular, the graph In on 4n vertices is produced
by first taking n copies of K1,3. Suppose that in copy i of K1,3 the three vertices
with degree 1 are labelled ai, bi and ci. The copies are joined together via a cycle
a1, a2, . . . , an, a1, and a cycle b1, b2, . . . , bn, c1, c2, . . . , cn, b1. Two examples of Flower
Snarks, I5 and I7, are displayed in Figure 8.

Figure 8: The Flower Snarks I5 and I7.

Zheng et al. [243] determined the crossing numbers of the graphs In (for both
odd and even n):

Theorem 2.50 (Zheng et al., 2008 [243]) For n ≥ 3, the following holds:

cr(In) =

{
n− 1, for 3 ≤ n ≤ 5,

n, for n ≥ 6.
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2.8 Hexagonal graph H3,n

The Hexagonal graph H3,n is defined as follows for n ≥ 2. Take the union of three
cycles of length 2n, and label their vertices ai, bi and ci respectively, for i = 1, . . . , 2n.
Then add the edges {a2i−1, b2i−1}, {b2i, c2i}, {a2i, c2i−1}, for i = 1, . . . , n. An example
of the Hexagonal graph H3,3 is displayed in Figure 9.

Figure 9: The Hexagonal graph H3,3, in an optimal drawing.

In 2019, Wang et al. [206] considered H3,n and determined its crossing number
for all n ≥ 2:

Theorem 2.51 (Wang et al. (2019) [206]) For n ≥ 2, the following holds:

cr(H3,n) = n.

3 Cartesian products of graphs

The Cartesian product of two graphs G and H is written as G�H . The result is a
graph with vertex set V (G) × V (H), and edges between vertices (u, u′) and (v, v′)
if and only if either u = v and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ E(G). An
example of the Cartesian product of two paths, P3�P4, is displayed in Figure 10.

Figure 10: The Cartesian product P3�P4.

The Cartesian product was the first graph product for which the crossing number
was investigated in detail, beginning in the 1970s and continuing to this day. Investi-
gations typically fall into two categories; either the Cartesian product of two families
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of graphs of unbounded size is considered, or the Cartesian product of specific graphs
with a family of graphs of unbounded size. In the latter case, researchers all over
the world have dedicated themselves to finding the crossing numbers of Cartesian
products involving the various connected graphs of small orders, each often involving
an ad hoc proof or technique unique to that graph.

If a graph G is disconnected, then G�H is equivalent to taking the union of the
Cartesian products of each component of G with H . Hence, the crossing number of
G�H is simply equal to the sum of the Cartesian products of H with each of its
connected components. To that end, in what follows, all results are for connected
graphs.

3.1 Cartesian products of cycles, paths and stars

A number of results have been determined for the Cartesian product of families of
graphs. In particular, much attention has been paid to Cartesian products involving
cycles, paths, and stars. The star graph Sn is simply the complete bipartite graph
K1,n. Since K1,1 = P1 and K1,2 = P2, we only consider Sn for n ≥ 3. It is easy to
check that the Cartesian product of a cycle with a path, or a path with a path, will
result in a planar graph. It can also easily be checked that the Cartesian product
of two stars Sn�Sm is isomorphic to a subdivision of the complete tripartite graph
K1,m,n, which is discussed in Section 2.1.2. We now consider the three remaining
cases.

3.1.1 Two cycles

The first publication to consider the Cartesian product of two cycles was by Harary
et al. [62] in 1973:

Conjecture 3.1 (Harary et al., 1973 [62]) For n ≥ m ≥ 3, the following holds:

cr(Cm�Cn) = (m− 2)n.

Conjecture 3.1 has been verified for m ≤ 7. Most of the proofs first rely on
finding the crossing number for the special case when n = m and then extending it
for n > m. The first such result was by Ringeisen and Beineke [164] who verified
Conjecture 3.1 for m = 3 in 1978.

In 1970, Eggleton and Guy [40] proved that cr(C4�C4) = 8 but the paper con-
tained a (separate) error and was never published. In 1980, Beineke and Ringeisen
[13] verified Conjecture 3.1 for m = 4 but relied on Eggleton and Guy’s result which
had still not appeared in the literature. A proof for cr(C4�C4) = 8 was finally
published in 1995 by Dean and Richter [34].

In 1995, Richter and Thomassen [163] verified Conjecture 3.1 for C5�C5, and the
general case was subsequently verified for m = 5 by Kleŝĉ et al. [108] in 1996.
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In 1996, Anderson et al. [8] verified Conjecture 3.1 for C6�C6, and the general
case was subsequently verified for m = 6 by Richter and Salazar [161] in 2001,
although the bulk of the work for doing so was first detailed in 1997 in Salazar’s
PhD thesis [166].

In 1996, Anderson et al. [9] verified Conjecture 3.1 for C7�C7, and the general
case was subsequently verified for m = 7 by Adamsson and Richter [3] in 2004.
Adamsson and Richter also claimed (providing only a sketch of the proof) that the
conjecture can be shown to hold for m = 8 if it can first be shown that cr(C8�C8) =
48.

In 2004, Glebsky and Salazar [51] provided a breakthrough by showing that for
each m, the conjecture must be true for all but a finite number of cases.

Theorem 3.2 (Glebsky and Salazar, 2004 [51]) For n ≥ m(m+1) and m ≥ 3,
the following holds:

cr(Cm�Cn) = (m− 2)n.

Some lower bounds have also been developed for the Cartesian product of two
cycles. In 1973, Harary et al. [62] showed that cr(Cm�Cn) ≥ m and asked if this could
be improved. In 1995, Shahrokhi et al. [173] showed that cr(Cm�Cn) ≥ mn

90
, and that

cr(Cm�Cn) ≥ mn
6

if n = m or n = m+ 1. In 1998, Shahrokhi et al. [174] improved
their result further to show that cr(Cm�Cn) ≥ mn

9
, and that cr(Cm�Cn) ≥ 3mn

5
if

n ≤ 5(m − 1)/4. In 2000, the lower bound was improved again to cr(Cm�Cn) ≥
(m−2)n

3
by Salazar [167]. Finally, this was further considered in 2004 by Salazar and

Ugalde [169], who gave what is currently the best asymptotic lower bound:

Theorem 3.3 (Salazar and Ugalde, 2004 [169]) For every ε > 0, there is an
Nε with the following property. For all n ≥ m ≥ Nε, the following holds:

cr(Cm�Cn) ≥ (0.8− ε)mn.

3.1.2 Paths and stars

This case has now been completely settled. The first results were due to Jendrol’
and Šcerbová [83] in 1982, where they determined an upper bound for the crossing
number of Sm�Pn, and conjectured that it held with equality. Their conjecture
would ultimately prove to be correct. They also verified their conjecture for m = 3,
as well as the special case of m = 4, n = 2. In 1991, Klešč [86] verified the conjecture
for m = 4. Finally, in 2007, Bokal verified the conjecture for all cases:

Theorem 3.4 (Bokal, 2007 [17]) For m ≥ 3 and n ≥ 1, the following holds:

cr(Sm�Pn) = (n− 1)
⌊m
2

⌋⌊m− 1

2

⌋
.
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3.1.3 Cycles and stars

Results for Sm�Cn are only known for min(m,n) ≤ 4. For arbitrarily large cycles,
the crossing numbers of S3�Cn and S4�Cn are due to Jendrol’ and Šcerbová (1982)
[83] and Klešč (1991) [86] respectively.

Theorem 3.5 (Jendrol’ and Šcerbová, 1982 [83]) The following holds:

cr(S3�Cn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, for n = 3,

2, for n = 4,

4, for n = 5,

n, for n ≥ 6.

Theorem 3.6 (Klešč, 1991 [86]) The following holds:

cr(S4�Cn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2, for n = 3,

4, for n = 4,

8, for n = 5,

2n, for n ≥ 6.

For arbitrarily large stars, the crossing numbers of Sm�C3 and Sm�C4 are known.
The former does not appear to have been explicitly stated anywhere, but it is trivial
to exhibit drawings of Sm�C3 with

⌊
m
2

⌋ ⌊
m−1
2

⌋
crossings, which is also a lower bound

because it contains Sm�P2 as a subgraph. The latter case was settled by Klešč
(1994) [87].

Theorem 3.7 (Klešč, 1994 [87]) For m ≥ 1, the following holds:

cr(Sm�C4) = 2

⌊
(m− 1)2

2

⌋
.

3.2 Cartesian products of paths with other graphs

3.2.1 Paths and cycles with one or two extra edges

In 2007, Yuan and Huang [222] ∗ considered the Cartesian product of a path with
a graph consisting of a cycle with one or two extra edges added. Consider the cycle
graph Cm on m ≥ 5 vertices. From this, construct a new graph H , by adding a chord
between two vertices of distance two. Similarly, consider a new graph B, constructed
by taking Cm and adding in two chords, whose endpoints have distance at least two.

Theorem 3.8 (Yuan and Huang, 2007 [222] ∗) For n ≥ 1, the following hold:

cr(Pn�H) = n− 1, ∗
cr(Pn�B) = 2n− 2. ∗
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3.2.2 Paths and double cones

The join product G+H (considered further in Section 4) is equal to the union of G
and H , plus edges linking every vertex of G to every vertex of H . A generalisation of
the wheel graph is the cone graph Wl,n, which is equal to the join product Cm +Dl,
where Dl is the discrete graph on l isolated vertices with zero edges. Then, W1,n is
simply the wheel graph. In this context, W2,n is referred to as the double cone. An
example of the double cone W2,6 is displayed in Figure 11. In 2011, Zheng et al. [244]
considered the Cartesian product of double cones with paths:

Theorem 3.9 (Zheng et al., 2011 [244]) For m ≥ 3 and n ≥ 1, the following
holds:

cr(W2,m�Pn) = 2n
⌊m
2

⌋⌊m− 1

2

⌋
+ 2n.

Figure 11: The wheel graph W6 and the double cone W2,6.

3.2.3 Paths and complete graphs

Consider the Cartesian product of the complete graph and the path graph, Kn�Pm.
It is clear that the graph is planar for n = 3, so we now consider n > 3.

The cases for n = 4 and n = 5 were settled by Klešč [87, 90] in 1994 and 1999
respectively:

Theorem 3.10 (Klešč, 1994 [87]) For m ≥ 1, cr(K4�Pm) = 2m.

Theorem 3.11 (Klešč, 1999 [90]) For m ≥ 1, cr(K5�Pm) = 6m.

In 2007, Zheng et al. [239] settled the case for n = 6, and gave an upper bound
the general case which they conjectured would hold with equality:

Theorem 3.12 (Zheng et al., 2007 [239]) For m ≥ 1, cr(K6�Pm) = 15m+ 3.
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Theorem 3.13 (Zheng et al., 2007 [239]) For n ≥ 4 and m ≥ 1,

cr(Kn�Pm) ≤
1

4

⌊
n+ 1

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋(
m

⌊
n + 4

2

⌋
+

⌊
n− 4

2

⌋)
.

Conjecture 3.14 (Zheng et al., 2007 [239]) Theorem 3.13 holds with equality.

In 2014, Ouyang et al. [149] confirmed that Conjecture 3.14 holds for n ≤ 10.

3.2.4 Paths and circulant graphs

Consider the path graph on n+ 1 vertices Pn, and the circulant graph Cim({1, k}).
The latter is sometimes referred to as C(m, k). There has been some effort to find
the crossing number of Pn�Cim(1, k), with the cases for m ≤ 6 being covered in
Sections 3.6–3.9. Here, we include the known results for larger m.

Theorem 3.15 (Yuan et al., 2008 [227] ∗)For n ≥ 1, cr(Pn�Ci7(1, 2)) = 8n. ∗
Theorem 3.16 (Yuan et al., 2008 [229]) For n ≥ 1, cr(Pn�Ci8(1, 2)) = 8n.

Theorem 3.17 (Wang and Ma, 2017 [208] ∗) For n ≥ 1, cr(Pn�Ci8(1, 4)) =
9n− 1. ∗
Theorem 3.18 (Yuan et al., 2013 [228] ) For n ≥ 1, cr(Pn�Ci9(1, 2)) = 10n.

Theorem 3.19 (Yuan et al., 2009 [230]) For n ≥ 1, cr(Pn�Ci10(1, 2)) = 10n.

Yuan et al. [230] also claim, without providing a proof, that cr(Pn�Ci11(1, 2)) =
cr(Pn�Ci12(1, 2)) = 12n. Later, a separate paper was published proving the latter
result:

Theorem 3.20 (Yuan and Huang, 2011 [225]) For n ≥ 1, cr(Pn�Ci12(1, 2)) =
12n.

3.2.5 Paths and complete multipartite graphs

There are a few results relating to the Cartesian products of paths and complete
multipartite graphs. Theorem 3.21 was also rediscovered a year later by Zhang et al.
[240].

Theorem 3.21 (Tang et al., 2007 [196]) For m ≥ 2 and n ≥ 1,

cr(Pn�K2,m) = 2n
⌊m
2

⌋⌊m− 1

2

⌋
.

Theorem 3.22 (Ouyang et al., 2014 [148]) For m ≥ 2 and n ≥ 1,

cr(Pn�K1,1,m) = 2n
⌊m
2

⌋ ⌊m− 1

2

⌋
+ (n− 1)

⌊m
2

⌋
.
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3.3 Cartesian products of cycles with other graphs

3.3.1 Cycles and 2-powers of paths

For a description of 2-powers of paths, see Section 2.5. In 2012, Klešč and Kravecová
[101] considered the Cartesian product of P 2

n and cycles. They conjectured the
crossing number, and proved it for the special case where the cycle has three vertices:

Conjecture 3.23 (Klešč and Kravecová, 2012 [101]) For n ≥ 2 and m ≥ 3,

cr(P 2
n�Cm) = m(n− 1).

Theorem 3.24 (Klešč and Kravecová, 2012 [101]) For n ≥ 2,

cr(P 2
n�C3) = 3n− 3.

Later in 2012, Kravecová and Petrillová [113] also proved the result for C4:

Theorem 3.25 (Kravecová and Petrillová, 2012 [113]) For n ≥ 2,

cr(P 2
n�C4) = 4n− 4.

3.4 Cartesian products of stars with other graphs

3.4.1 Stars and trees

In 2007, Bokal [18] showed that the crossing number of Sn�T , where T is a tree, can
be written in terms of the crossing numbers of complete tripartite graphs, as follows:

Theorem 3.26 (Bokal, 2007 [18]) Consider a tree T , and define d(v) to be the
degree of vertex v in T . Then,

cr(Sn�T ) =
∑

v∈V (T )

cr(K1,d(v),n).

At the time Bokal published his result, cr(K1,m,n) was only known for m ≤ 3.
In the ensuing years, it was determined for m = 4, 5 (see Section 2.1.2). Hence, the
following corollary can be stated.

Corollary 3.27 Consider a tree T with maximum degree 5. Let ni be the number
of vertices of degree i contained in T , and set a = n2 + 2n3 + 4n4 + 6n5 and b =
n3 + 2n4 + 4n5. Then,

cr(Sn�T ) = a
⌊n
2

⌋⌊n− 1

2

⌋
+ b
⌊n
2

⌋
.
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Figure 12: The sunlet graphs S6 and S9.

3.4.2 Stars and sunlet graphs

The sunlet graph Sn is the graph on 2n vertices constructed by taking the cycle Cn

and adding a pendant edge to each vertex. Two examples of sunlet graphs, S6 and
S9 are displayed in Figure 12.

In 2019, Haythorpe and Newcombe [64] considered the Cartesian product of a
sunlet graph Sn and a star graph Sm. They were able to determine the crossing
number for m ≤ 3 and gave an upper bound for larger m which they conjecture
coincides with the crossing number.

Theorem 3.28 (Haythorpe and Newcombe, 2019 [64]) For n ≥ 3 and m ≥
1, the following holds:

cr(Sn�Sm) =

⎧⎪⎨
⎪⎩
0, for m = 1,

n, for m = 2,

3n, for m = 3.

Additionally, for m ≥ 4, cr(Sn�Sm) ≤ nm(m−1)
2

.

Conjecture 3.29 (Haythorpe and Newcombe, 2019 [64]) The upper bound in
Theorem 3.28 holds with equality.

3.5 Cartesian products of other graph families

3.5.1 Complete graphs and complete bipartite graphs

Zheng et al. [240] proved the following bounds related to Cartesian products involving
complete graphs with cycles, and complete bipartite graphs with paths:

Theorem 3.30 (Zheng et al., 2008 [240]) The following hold:

1. cr(Km�Cn) ≥ n · cr(Km+2), for n ≥ 3, m ≥ 5.

2. cr(Km�Cn) ≤ n
4

⌊
m+2
2

⌋ ⌊
m+1
2

⌋ ⌊
m
2

⌋ ⌊
m−1
2

⌋
, for m = 5, 6, 7, n ≥ 3, and for

m ≥ 8 with even n ≥ 4.
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3. cr(Km,l�Pn) ≤ (n− 1)(
⌊
m+2
2

⌋ ⌊
m+1
2

⌋ ⌊
l+2
2

⌋ ⌊
l+1
2

⌋
−ml)

+2(
⌊
m+1
2

⌋ ⌊
m
2

⌋ ⌊
l+1
2

⌋ ⌊
l
2

⌋
−
⌊
m
2

⌋ ⌊
l
2

⌋
), for m, l ≥ 2 and n ≥ 1.

They also showed that equality holds for item 2 for some small values of m:

Theorem 3.31 (Zheng et al., 2008 [240]) For n ≥ 1, m ≥ 2,

cr(Km�Cn) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9n m = 5, n ≥ 3,
18n m = 6, n ≥ 3,
36n m = 7, n ≥ 3,
60n m = 8, n ≥ 4 and even,
100n m = 9, n ≥ 4 and even,
150n m = 10, n ≥ 4 and even.

3.5.2 Wheels and trees

Consider the wheel graph Wn on n+1 vertices. In 2017, Klešč et al. [107] considered
the Cartesian product of wheel graphs with trees of maximum degree no larger than 5:

Theorem 3.32 (Klešč et al., 2017 [107]) Let Wn be the wheel graph on n + 1
vertices, and T be a tree with maximum degree 	(T ) ≤ 5. Let ni be the number of
vertices of degree i in T , and set a = n1 + n2 + 2n3 + 2n4 + 3n5 and b = n2 + 2n3 +
4n4 + 6n5 and c = n3 + 2n4 + 4n5. Then, for n ≥ 3,

cr(Wn�T ) = a+ b
⌊n
2

⌋⌊n− 1

2

⌋
+ c
⌊n
2

⌋
.

This result extended an earlier result of Cartesian products of wheels with sub-
cubic trees by Bokal [18] in 2007.

Wang and Huang [209] gave a similar result, except for the situation when the
tree can have any degree, but the wheel is restricted to maximum degree 5.

Theorem 3.33 (Wang and Huang, (to appear) [209]) Let Wn be the wheel
graph on n+ 1 vertices, for n = 3, 4, 5, and T be a tree with maximum degree 	(T ).
Let ni be the number of vertices of degree i in T . Then,

cr(Wn�T ) =

⎧⎪⎨
⎪⎩
∑	(T )

i=1 ni(2
⌊
i
2

⌋ ⌊
i−1
2

⌋
+ i) for n = 3,∑	(T )

i=1 ni(4
⌊
i
2

⌋ ⌊
i−1
2

⌋
+ i+

⌊
i
2

⌋
) for n = 4,∑	(T )

i=1 ni(6
⌊
i
2

⌋ ⌊
i−1
2

⌋
+ i+ 3

⌊
i
2

⌋
) for n = 5.

3.6 Cartesian products with 3-vertex graphs

There are only two connected non-isomorphic graphs on 3 vertices; the path P2 and
the cycle C3. Although no author made a point of considering Cartesian products
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with 3-vertex graphs specifically, the results presented in Table 4 are all known from
other works, as follows.

The Cartesian products of paths and paths, or paths and cycles, always produce
planar graphs. The result for P2�Sn is due to Bokal (2007) [17]. The result for
C3�Cn is due to Ringeisen and Beineke (1978) [164]. The result for C3�Sn was
discussed in Section 3.1.3.

Table 4: Crossing numbers of Cartesian products of 3-vertex graphs with paths,
cycles and stars. The results for Pn are for n ≥ 1, and the results for Cn and Sn are
for n ≥ 3.

G cr(G�Pn) cr(G�Cn) cr(G�Sn)

P2 0 0
⌊
n
2

⌋ ⌊
n−1
2

⌋
C3 0 n

⌊
n
2

⌋ ⌊
n−1
2

⌋

3.7 Cartesian products with 4-vertex graphs

There are six connected non-isomorphic graphs on 4 vertices. We denote the graphs
on 4 vertices as G4

i , and note that there are eleven such graphs. However, only six of
these are connected, which correspond to i = 5, 7, 8, 9, 10, 11 as displayed in Table 5.
In 1980, Beineke and Ringeisen [13] considered the crossing numbers of the Cartesian
product of each of them with the cycle graph on n vertices. They were able to settle
all cases except for G4

7�Cn, which was subsequently settled in 1982 by Jendrol’ and
Šcerbová [83]. The latter authors also settled G4

7�Pn. The result for G4
7�Cn is only

valid when n ≥ 6. For smaller values of n, we have cr(G4
7�C3) = 1, cr(G4

7�C4) = 2
and cr(G4

7�C5) = 4.

In 1994, Klešč [87] then derived crossing numbers of the remaining Cartesian
products of each of the six connected four-vertex graphs with path graphs and star
graphs. The results are summarised in Table 5.

3.8 Cartesian products with 5-vertex graphs

There are 21 connected non-isomorphic graphs on 5 vertices. We denote the con-
nected graphs on 5 vertices as G5

i , as defined in Table 6. For most of them, the cross-
ing numbers of their Cartesian products with cycles, stars and paths are known. The
results are summarised in Table 6, with the graphs indexed in the order originally
designated by Klešč in [93]. The main contributions are discussed below and a list
of publications where each result was first proved is displayed in Appendix A.2.2.

For paths, the crossing number has been determined for all 21 graphs. The
majority of the results were first determined in Klešč (2001) [93]. In particular,
cr(G5

i�Pn) was first determined in [93] for i = 3, 4, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20. In
addition, it is easy to check that G5

1�Pn and G5
8�Pn are planar.
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Table 5: Crossing numbers of Cartesian products of 4-vertex graphs with paths,
cycles and stars. The results for Pn are for n ≥ 1, and the results for Cn and Sn are
for n ≥ 3.

i G4
i cr(G4

i�Pn) cr(G4
i�Cn) cr(G4

i�Sn)

5 0 0 2
⌊
n
2

⌋ ⌊
n−1
2

⌋
7 n− 1 n (n ≥ 6),

1 (n = 3)
2 (n = 4)
4 (n = 5)

2
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
8 0 2n 2

⌊
n
2

⌋ ⌊
n−1
2

⌋
9 n− 1 n 2

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
10 n− 1 2n 2

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
11 2n 3n 2

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n

For cycles, the crossing number has been determined for 15 graphs, with the cases
i = 10, 15, 17, 18, 19, 20 still unknown. The majority of cases were settled in Klešč
(2001) [93] (i = 4, 5, 9, 12) and Klešč (2005) [95] (i = 3, 6, 7, 13, 14), although each
of the latter were first stated (without proof) in [93]. For G5

9�Cn, the result was
claimed in [93] to hold only for n ≥ 6, but was then later shown to hold for all n ≥ 3
in Klešč (2005) [95]. In addition, Klešč (2002) [94] also determined an upper bound
for G5

10�Cn.

Theorem 3.34 (Klešč, 2002 [94]) cr(G5
10�C3) = 9, and for n ≥ 4,

cr(G5
10�Cn) ≤ 4n.

For stars, the crossing number has been determined for 16 graphs, with the cases
i = 5, 8, 12, 13, 16 still unknown. The result for G5

2�Sn was first determined by
Huang and Zhao (2008) [81] and independently by Ho (2008) [73] by recognizing it
as a subdivision of K1,4,n.
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Table 6: Crossing numbers of Cartesian products of 5-vertex graphs with paths,
cycles and stars. Unless otherwise stated, the results for Pn are for n ≥ 1, and the
results for Cn and Sn are for n ≥ 3. Empty cells imply the crossing number is not
known.

i G5
i cr(G5

i�Pn) cr(G5
i�Cn) cr(G5

i�Sn)

1 0 0 3
⌊
n
2

⌋ ⌊
n−1
2

⌋
2 2n− 2 2n (n ≥ 6),

2 (n = 3)
4 (n = 4)
8 (n = 5)

n(n− 1)

3 n− 1 n (n ≥ 6),
1 (n = 3)
2 (n = 4)
4 (n = 5)

3
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
4 n− 1 n 3

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
5 n− 1 n

6 2n− 2 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

n(n− 1)

7 n− 1 2n (n ≥ 4), 4 (n = 3) 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋ ∗

8 0 3n (n ≥ 5),
5 (n = 3)
10 (n = 4)

9 2n− 2 2n n(n− 1)

10 2n 9 (n = 3) 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n

11 2n− 2 3n (n ≥ 4), 7 (n = 3) n(n− 1)

12 2n− 2 2n

13 n− 1 3n (n ≥ 4), 7 (n = 3)

14 2n− 2 3n n(n− 1)

15 3n− 1 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n+

⌊
n
2

⌋
16 3n− 1 2

(
n+

⌊
n+1
2

⌋)
17 2n 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n

18 3n− 1 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n+

⌊
n
2

⌋
19 3n− 1 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n+

⌊
n
2

⌋
20 4n 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4n ∗

21 6n 9n 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
+ 5n+ 1
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3.9 Cartesian products with 6-vertex graphs

In this section, we gather the known crossing numbers for Cartesian products of
various 6-vertex graphs with paths, cycles and stars. There are, up to isomorphism,
112 connected graphs on 6 vertices. In order to refer to these graphs in a consistent
manner, we give each 6-vertex graph a label, in the order originally designated by
Harary [58]. We denote the graphs on 6 vertices as G6

i , as defined for all indices,
in Appendix A.1 and also repeated for the graphs of interest in the Tables of this
section. The list in Appendix A.1 includes disconnected graphs, which brings the
total to 156 graphs, but the disconnected graphs are only used in Section 4.

3.9.1 Paths

In 2013, Klešč and Petrillová [105] gave a summary of known results, including the
crossing numbers of Cartesian products of path graphs with forty different graphs
on 6 vertices. The majority of those results were first determined in [105], including
cr(G6

i�Pn) for i = 26, 27, 28, 29, 41, 43, 44, 45, 46, 47, 48, 53, 54, 59, 60, 61, 64,
66, 72, 73, 74, 77, 79, 80, 83, 85, 86, 94, 104, 111, 121. For G6

121, the result relied
on a previous paper which has not undergone peer review, and so we mark that
result with an asterisk. These, along with the remaining settled cases are displayed
in Table 7. A list of publications where each result was first proved is displayed in
Appendix A.2.3. In total, the crossing number of G6

i�Pn has been settled for 48 of
the 6-vertex graphs to date, with an additional 8 results claimed in papers which
have not undergone adequate peer review. The latter are marked with asterisks.

3.9.2 Cycles

To date, results are only known for graphs with few edges, with the only exception
being the result with K6. To date, the crossing number has been determined for
15 cases and 10 of these are due to Draženská and Klešč (2011) [39]. These results
are listed in Table 8 and a list of publications where each result was first proved is
displayed in Appendix A.2.4.

3.9.3 Stars

The crossing numbers for the Cartesian product of many 6-vertex graphs and stars
were provided in 2013 by Klešč and Schrötter [111] who made an attempt to gather
the results known to them at the time. In that paper, they determined the crossing
number of G6

i�Sn, for seventeen graphs, however some of them had been previously
determined. Only the cases i = 27, 31, 43, 47, 48, 53, 59, 72, 73, 77, 79, 80, 104 were
newly settled in [111], although the case of i = 27 could also be seen as a corollary of
Bokal (2007) [18] and Huang and Zhao (2008) [81]. In total, the crossing number of
G6

i�Sn has been settled for 20 graphs to date and these are displayed in Table 9. A
further 8 cases have had results claimed in papers which have not undergone adequate
peer review; these are marked by asterisks. A list of publications where each result
was first proved is displayed in Appendix A.2.5.
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Table 7: Known crossing numbers of Cartesian products of 6-vertex graphs with
paths. All results are for n ≥ 1.

i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn)

25 0 60 n− 1 89 3n− 3

26 n− 1 61 2n 91 3n− 1

27 2n− 2 64 2n− 2 93 4n ∗
28 n− 1 65 3n− 3 94 2n− 2

29 2n− 2 66 2n− 2 103 6n− 2

31 4n− 4 68 3n− 1 104 4n− 4

40 0 70 3n− 3 109 4n ∗
41 n− 1 71 3n− 1 111 3n− 1

42 2n− 4 72 4n− 4 113 4n− 4

43 n− 1 73 4n− 4 119 7n− 1 ∗
44 2n− 2 74 2n− 2 120 3n− 3 ∗
45 2n− 2 75 2n 121 4n ∗
46 n− 1 77 2n− 2 125 5n− 3

47 2n− 2 79 4n− 4 146 5n− 1 ∗
48 4n− 4 80 4n− 4 152 6n ∗
51 3n− 3 83 2n− 2 154 9n− 1

53 2n− 2 85 2n 155 12n ∗
54 2n− 2 86 3n− 1 156 15n+ 3

59 2n− 2 87 3n− 1
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Table 8: Crossing numbers of Cartesian products of 6-vertex graphs with cycles.

i G6
i cr(G6

i�Cn) i G6
i cr(G6

i�Cn)

25 0 49 2n (n ≥ 4), 4 (n = 3)

40 4n (n ≥ 6),
6 (n = 3)
12 (n = 4)
18 (n = 5)

53 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

41 3n (n ≥ 5),
5 (n = 3)
10 (n = 4)

54 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

42 2n (n ≥ 4), 4 (n = 3) 67 3n (n ≥ 4), 7 (n = 3)

43 n (n ≥ 3) 78 3n (n ≥ 6),
7 (n = 3)
10 (n = 4)
14 (n = 5)

44 2n (n ≥ 4), 4 (n = 3) 113 4n (n ≥ 3)

46 n (n ≥ 3) 156 18n (n ≥ 3)

47 2n (n ≥ 6),
4 (n = 3)
6 (n = 4)
9 (n = 5)

3.10 Cartesian products with graphs on 7 or more vertices

3.10.1 7-vertex graphs with paths, cycles and stars

In 2005, He and Huang [70] ∗ considered six graphs on seven vertices and determined
the crossing number of their Cartesian products with paths. The results are sum-
marised in Table 10, with those graphs labelled G7

1 to G7
6. The Cartesian product

of two additional graphs with paths were considered by Liu et al. (2012) [129] ∗
and Ding et al. (2018) [36]; those graphs are labelled G7

7 and G7
8 respectively. There

are also a number of known results for Cartesian products of named 7-vertex graphs
with paths, cycles and stars. These are provided in Table 11 along with a list of the
publications where the result was proved.

Additionally, the crossing number of the Cartesian product of a star with any
7-vertex tree except S6 is known due to Bokal (2007) [18] (see Section 3.4).

3.10.2 8-vertex graphs with paths, cycles and stars

The results in Table 12 are due to Yuan and Huang (2007) [222] ∗, with the exception
of G8

5 which is due to Ding et al. (2018) [36]. There are also a number of known
results for Cartesian products of named 8-vertex graphs with paths, cycles and stars.
These are provided in Table 13 along with a list of the publications where the result
was proved.
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Table 9: Crossing numbers of Cartesian products of 6-vertex graphs with stars.

i G6
i cr(G6

i�Sn) i G6
i cr(G6

i�Sn)

25 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
77 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
26 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
79 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
27 5

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
80 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
28 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
85 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n ∗

29 4
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
93 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4n ∗

31 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
94 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
43 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
104 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
47 5

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
111 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
+ 2n∗

48 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
120 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 3

⌊
n
2

⌋ ∗
53 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
124 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n+ 3

⌊
n
2

⌋∗
59 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2

⌊
n
2

⌋
125 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 3

⌊
n
2

⌋
+ 2n

61 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 2n∗ 130 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4n ∗

72 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
137 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4n ∗

73 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 4

⌊
n
2

⌋
152 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ 6n

Table 10: Crossing numbers of Cartesian products of 7-vertex graphs with paths.
All results are for n ≥ 1.

i G7
i cr(G7

i�Pn) i G7
i cr(G7

i�Pn) i G7
i cr(G7

i�Pn)

1 3n− 3 ∗ 4 n− 1 ∗ 7 5n− 1 ∗

2 4n− 4 ∗ 5 2n ∗ 8 4n− 4

3 2n− 2 ∗ 6 2n− 2 ∗
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Table 11: Crossing numbers of Cartesian products of named 7-vertex graphs with
paths, cycles and stars.

Graph family Crossing number Publication

S6�Pn 6n− 6 Bokal (2007) [17]

Ci7({1, 2})�Pn 8n ∗ Yuan et al. (2008) [227] ∗
W6�Pn 7n− 5 Bokal (2007) [18]

K2,5�Pn 8n Tang et al. (2007) [196]

K1,1,5�Pn 10n− 2 Ouyang et al. (2014) [148]

K7�Pn 30n+ 6 Ouyang et al. (2014) [149]

P6�Sn 5
⌊
n
2

⌋ ⌊
n−1
2

⌋
Bokal (2007) [17]

C7�Cn 5n Adamsson and Richter (2004) [3]

K7�Cn 36n Zheng et al. (2008) [240]

Table 12: Crossing numbers of Cartesian products of 8-vertex graphs with paths.
All results are for n ≥ 1.

i G8
i cr(G8

i�Pn) i G8
i cr(G8

i�Pn) i G8
i cr(G8

i�Pn)

1 n− 1 ∗ 3 2n− 2 ∗ 5 4n− 4

2 2n− 2 ∗ 4 2n− 2 ∗
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Table 13: Crossing numbers of Cartesian products of named 8-vertex graphs with
paths, cycles and stars.

Graph family Crossing number Publication

S7�Pn 9n− 9 Bokal (2007) [17]

W7�Pn 10n− 8 Bokal (2007) [18]

Ci8({1, 2})�Pn 8n Yuan et al. (2008) [229]

Ci8({1, 4})�Pn 9n− 1 ∗ Wang and Ma (2017) [208] ∗
GP (4, 1)�Pn 8n ∗ Yuan and Huang (2011) [226] ∗
K2,6�Pn 12n Tang et al. (2007) [196]

K1,1,6�Pn 15n− 3 Ouyang et al. (2014) [148]

K8�Pn 54n+ 18 Ouyang et al. (2014) [149]

P7�Sn 6
⌊
n
2

⌋ ⌊
n−1
2

⌋
Bokal (2007) [17]

Additionally, the crossing number of the Cartesian product of a star with
any 8-vertex tree with maximum degree 5 is known due to Bokal (2007) [18] (see
Section 3.4).

3.11 Variants of toroidal grid graphs

Toroidal grid graphs are another name for the Cartesian product of two cycles. In
2002, Foley et al. [47] considered the crossing numbers of two variants of toroidal grid
graphs; specifically, the twisted toroidal grid graph T (m,n) and the crossed toroidal
grid graphs X (m,n). The twisted toroidal graph T (3, n) is equivalent to C3�Cn,
except vertices 1, 2, 3 in the final cycle link to vertices 3, 1, 2 in the first cycle,
respectively. The crossed toroidal graph X (3, n) is equivalent to C3�Cn, except
vertices 1, 2, 3 in the final cycle link to vertices 1, 3, 2 in the first cycle, respectively.
Examples of T (3, 5) and X (3, 5) are displayed in Figure 13.

Theorem 3.35 (Foley et al., 2002 [47]) For n ≥ 3, the following holds:

cr(T (3, n)) = cr(X (3, n)) = n.

4 Join products of graphs

The join product of two graphs G and H , denoted G + H and sometimes simply
called the join of G and H , is equal to the union of G and H , plus edges linking
every vertex of G to every vertex of H . An example of the join product of two paths,
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Figure 13: The twisted toroidal grid graph T (3, 5) and the crossed toroidal grid
graph X (3, 5), respectively.

P3 + P4, is displayed in Figure 14 in two drawings, with the latter drawing being
crossing-optimal.

Figure 14: Two drawings of the join product P3+P4, with the second being optimal.

In effect, the join product connects G andH by the edges of the complete bipartite
graph K|G|,|H|. Hence, the crossing number of a join product is bounded below by
the crossing number of the corresponding complete bipartite graph. Accordingly, the
crossing number of the complete bipartite graph has appeared in all known results
for join products to date. Within this section we will adopt the common practice of
defining Z(m,n) to be the conjectured crossing number of Km,n (see Section 2.1.1).

Z(m,n) :=
⌊m
2

⌋⌊m− 1

2

⌋ ⌊n
2

⌋ ⌊n− 1

2

⌋
.

Recall from Section 2.1.1 that Z(m,n) is only known to coincide with cr(Km,n)
if min{m,n} ≤ 6, or for the special cases when 7 ≤ min{m,n} ≤ 8 and 7 ≤
max{m,n} ≤ 10. The crossing numbers of families of graphs resulting from join
products have, to date, only been computed exactly when at least one graph in-
volved has at most six vertices. Hence, this section will be divided into subsections
corresponding to the size of the fixed graph in the join product. We highlight a few
important points regarding this section before continuing.
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Unlike for Cartesian products, the join product always results in a connected
graph, even if one or both of the graphs involved is disconnected. Hence, we will also
consider disconnected graphs in this section. In addition to cycles and paths which
were considered extensively in Section 3, it is also common to consider the crossing
number of join products of graphs with the discrete graph. The discrete graph Dn

is the graph with n isolated vertices and no edges. It is also often denoted nK1.
To date it has been rare to consider the crossing number of join products involving
arbitrarily large stars.

A number of interesting graphs can be viewed as being the result of join prod-
ucts. Most notably, complete multipartite graphs can be viewed as resulting from
join products, in the following way. Consider the complete k-partite graphKa1,a2,...,ak .
Then Ka1,a2,...,ak+Dn is isomorphic to the complete (k+1)-partite graph Ka1,a2,...,ak,n.
Hence, a number of results for join products can be taken from the various publi-
cations on crossing numbers of complete multipartite graphs, and vice versa. We
include such results in what follows, even if they were not originally presented as
join product results.

Finally, when referring to join products, it is common in the literature to use the
notation Pn to refer to the path graph on n vertices; this is contrary to the more
standard usage of Pn to refer to the path graph on n+1 vertices. The reason for this
is that the order of each input graph is an important variable in join products, as
the crossing number will inevitably contain Z(m,n) for input graphs of size m and
n. Despite this common practice in the literature, for the sake of consistency we will
maintain our notation from the rest of this survey, and use Pn−1 to refer to the path
graph on n vertices.

4.1 Join products with 3-vertex graphs

There are four graphs, up to isomorphism, on three vertices; see Table 14. The
crossing numbers of the join products with discrete graphs, paths and cycles has
been found for each of them. Each of the results for join products with Pn−1 and Cn

was found by Klešč (2007) [96]. Since every join product with a three vertex graph
contains K3,n and hence a lower bound is Z(3, n), and Dn is a subgraph of Pn−1, the
results for join products with Dn can be seen as immediate corollaries.

4.2 Join products with 4-vertex graphs

There are eleven graphs, up to isomorphism, on four vertices; see Table 15. The
crossing numbers of the join products with discrete graphs, paths and cycles has
been found for each of them.

Each of the results for join products with Pn−1 and Cn were first shown by Klešč
(2007) [96]. The results for join products with Dn were first shown by Klešč and
Schrötter (2011) [109], with three exceptions. First, G4

1 +Dn = K4,n, for which the
crossing number was first determined by Guy (1969) [54]. Second, G4

7+Dn = K1,3,n,
for which the crossing number was first determined by Asano (1986) [10]. Finally,
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Table 14: Crossing numbers of joins of 3-vertex graphs with discrete graphs, paths
and cycles. The results for Pn−1 are for n ≥ 2 and the results for Cn are for n ≥ 3.

i G3
i cr(G3

i +Dn) cr(G3
i + Pn−1) cr(G3

i + Cn)

1 Z(3, n) Z(3, n) Z(3, n)

2 Z(3, n) Z(3, n) Z(3, n)

3 Z(3, n) Z(3, n) Z(3, n) + 1

4 Z(3, n) Z(3, n) + 1 Z(3, n) + 2

Table 15: Crossing numbers of joins of 4-vertex graphs with discrete graphs, paths
and cycles. The results for Dn are for n ≥ 1, the results for Pn−1 are for n ≥ 2, and
the results for Cn are for n ≥ 3.

i G4
i cr(G4

i +Dn) cr(G4
i + Pn−1) cr(G4

i + Cn)

1 Z(4, n) Z(4, n) Z(4, n)

2 Z(4, n) Z(4, n) Z(4, n)

3 Z(4, n) Z(4, n) Z(4, n)

4 Z(4, n) Z(4, n) Z(4, n) + 1

5 Z(4, n) Z(4, n) Z(4, n) + 1

6 Z(4, n) +
⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
+ 2

7 Z(4, n) +
⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
+ 2

8 Z(4, n) Z(4, n) + 1 Z(4, n) + 2

9 Z(4, n) +
⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
+ 2

10 Z(4, n) +
⌊
n
2

⌋
Z(4, n) +

⌊
n
2

⌋
+ 1 Z(4, n) +

⌊
n
2

⌋
+ 3

11 Z(4, n) + n Z(4, n) + n+ 1 Z(4, n) + n + 4

G4
11 + Dn = K1,1,1,1,n, for which the crossing number was first determined by Ho

(2009) [75].
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4.3 Join products with 5-vertex graphs

We first consider the 21 connected graphs on five vertices; see Table 16. We use the
same graph identifiers as first given by Klešč [93] to describe the 5-vertex graphs.
For many of the graphs, the crossing numbers of their join products with discrete
graphs, paths and cycles have been determined. A list of publications where each
result was first proved is displayed in Appendix A.2.6, except for the cases G5

1 +Dn

and G5
8 +Dn which are immediately corollaries of Kleitman [85]. It is worth noting

that n(n− 1), a common expression in Table 16, is equal to Z(5, n) + 2
⌊
n
2

⌋
.

In addition, in 2018, Su [188] gave a conjecture about cr(G5
21 + Cn):

Conjecture 4.1 (Su, 2018 [188]) For n ≥ 3,

cr(G5
21 + Cn) = Z(5, n) + 2n+

⌊n
2

⌋
+ 7.

4.3.1 Disconnected 5-vertex graphs

In 2014, Li [121] ∗ considered the disconnected graph constructed by taking the
union of C4 and one isolated vertex:

Theorem 4.2 (Li, 2014 [121] ∗) Let G be C4 ∪K1, then the following hold:

cr(G+Dn) = Z(5, n) +
⌊n
2

⌋
, for n ≥ 1, ∗

cr(G+ Pn−1) = Z(5, n) +
⌊n
2

⌋
+ 1, for n ≥ 2, ∗

cr(G+ Cn) = Z(5, n) +
⌊n
2

⌋
+ 2, for n ≥ 3. ∗

The result for cr(G + Dn) was independently confirmed in 2018 by Ding and
Huang [35].

In 2019, Staš [179] considered the disconnected graph constructed by taking the
union of G4

9 with an isolated vertex.

Theorem 4.3 (Staš, 2019 [179]) Let G be G4
9 ∪K1, then for n ≥ 1, the following

holds:
cr(G+Dn) = Z(5, n) +

⌊n
2

⌋
.

4.4 Join products with 6-vertex graphs

So far, join products involving 6-vertex graphs have only been considered in-depth
for connected 6-vertex graphs, and are only known for some cases. Specifically, for
the graphs displayed in Table 17. A list of publications where each result was first
proved is displayed in Appendix A.2.7, except for the cases G6

25 +Dn and G6
40 +Dn

which are immediately corollaries of Kleitman [85]. As in Section 3.9, we use the
graph indices from Appendix A.1 to denote each graph for which a result has been
determined.
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Table 16: Crossing numbers of joins of connected 5-vertex graphs with discrete
graphs, paths and cycles. The results for Dn are for n ≥ 1, the results for Pn−1

are for n ≥ 2, and the results for Cn are for n ≥ 3. Empty cells imply that the
crossing number has not yet been determined.

i G5
i cr(G5

i +Dn) cr(G5
i + Pn−1) cr(G5

i + Cn)

1 Z(5, n) Z(5, n) Z(5, n) + 1

2 n(n− 1) n(n− 1) ∗ n(n− 1) + 2 ∗
3 Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1

4 Z(5, n) +
⌊
n
2

⌋ ∗ Z(5, n) +
⌊
n
2

⌋ ∗ Z(5, n) +
⌊
n
2

⌋
+ 1 ∗

5 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 2

6 n(n− 1) ∗ n(n− 1) + 2 ∗
7 Z(5, n) +

⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 ∗ Z(5, n) +

⌊
n
2

⌋
+ 2

8 Z(5, n) Z(5, n) + 1 Z(5, n) + 2

9 n(n− 1) ∗ n(n− 1) + 2 ∗
10 Z(5, n) + n Z(5, n) + n+ 1 Z(5, n) + n + 3

11 n(n− 1) n(n− 1) + 1 ∗ n(n− 1) + 3 ∗
12 n(n− 1) ∗ n(n− 1)

13 Z(5, n) +
⌊
n
2

⌋
Z(5, n) +

⌊
n
2

⌋
+ 1 Z(5, n) +

⌊
n
2

⌋
+ 2

14 n(n− 1) n(n− 1) + 1 ∗ n(n− 1) + 3 ∗
15 Z(5, n) + n +

⌊
n
2

⌋ ∗ Z(5, n) + n +
⌊
n
2

⌋
+ 2 Z(5, n) + n+

⌊
n
2

⌋
+ 4

16 Z(5, n) + n +
⌊
n
2

⌋ ∗ Z(5, n) + n+
⌊
n
2

⌋
+ 1∗ Z(5, n) + n +

⌊
n
2

⌋
+ 3∗

17 Z(5, n) + n+ 1

18 Z(5, n) + n +
⌊
n
2

⌋ ∗ Z(5, n) + n+
⌊
n
2

⌋
+ 2∗ Z(5, n) + n+

⌊
n
2

⌋
+ 4

19 Z(5, n) + n+
⌊
n
2

⌋
Z(5, n) + n+

⌊
n
2

⌋
+ 1∗ Z(5, n) + n+

⌊
n
2

⌋
+ 4

20 Z(5, n) + 2n Z(5, n) + 2n+ 2

21 Z(5, n) + 2n+
⌊
n
2

⌋
+ 1 Z(5, n) + 2n+

⌊
n
2

⌋
+ 4
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Table 17: Crossing numbers of joins of particular 6-vertex graphs with discrete
graphs, paths and cycles. The results for Dn are for n ≥ 1, the results for Pn−1

are for n ≥ 2, and the results for Cn are for n ≥ 3. Empty cells imply that the
crossing number has not yet been determined.

i G6
i cr(G6

i +Dn) cr(G6
i + Pn−1) cr(G6

i + Cn)

25 Z(6, n) Z(6, n) Z(6, n) + 1

31 Z(6, n) + 4
⌊
n
2

⌋ ∗ Z(6, n) + 4
⌊
n
2

⌋ ∗ Z(6, n) + 4
⌊
n
2

⌋
+ 3 ∗

40 Z(6, n) Z(6, n) + 1 Z(6, n) + 2

44 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋ ∗
45 Z(6, n) + 2

⌊
n
2

⌋
48 Z(6, n) + 4

⌊
n
2

⌋ ∗
49 Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 2

59 Z(6, n) + 2
⌊
n
2

⌋ ∗ Z(6, n) + 2
⌊
n
2

⌋
+ 1

60 Z(6, n) +
⌊
n
2

⌋
Z(6, n) +

⌊
n
2

⌋
+ 1 Z(6, n) +

⌊
n
2

⌋
+ 2

61 Z(6, n) + n Z(6, n) + n+ 1 Z(6, n) + n+ 3

66 Z(6, n) + 2
⌊
n
2

⌋
72 Z(6, n) + 4

⌊
n
2

⌋ ∗
73 Z(6, n) + 4

⌊
n
2

⌋ ∗
74 Z(6, n) + 2

⌊
n
2

⌋
79 Z(6, n) + 4

⌊
n
2

⌋ ∗
83 Z(6, n) + 2

⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 2

85 Z(6, n) + n ∗
93 Z(6, n) + 2n

94 Z(6, n) + 2
⌊
n
2

⌋
Z(6, n) + 2

⌊
n
2

⌋
+ 1 Z(6, n) + 2

⌊
n
2

⌋
+ 3

103 Z(6, n) + 2
⌊
n
2

⌋
+ 2n ∗ Z(6, n) + 2

⌊
n
2

⌋
+ 2n+ 2∗

109 Z(6, n) + 2n Z(6, n) + 2n + 1 Z(6, n) + 2n+ 3

111 Z(6, n) + n +
⌊
n
2

⌋ ∗ Z(6, n) + n+
⌊
n
2

⌋
+ 1 ∗ Z(6, n) + n+

⌊
n
2

⌋
+ 3 ∗

120 Z(6, n) + 3
⌊
n
2

⌋ ∗ Z(6, n) + 3
⌊
n
2

⌋
+ 2 Z(6, n) + 3

⌊
n
2

⌋
+ 4

124 Z(6, n) + n + 3
⌊
n
2

⌋ ∗
125 Z(6, n) + n+ 3

⌊
n
2

⌋
Z(6, n) + n + 3

⌊
n
2

⌋
+ 1 ∗
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Table 17 (continued):

130 Z(6, n) + 2n∗
137 Z(6, n) + 2n∗
152 Z(6, n) + 3n

4.5 Other join products

4.5.1 Triangular snakes

The triangular snake graph TSn is the graph with n vertices, for odd n, defined as
follows. Start by taking the path graph Pn−1 and add the edges {2i− 1, 2i+ 1} for
i = 1, . . . , n−1

2
. An example of TS11 is displayed in Figure 15.

Figure 15: The triangular snake TS11.

Rajan et al. [160] considered the join product of TSn with discrete graphs, paths,
and cycles with at most six vertices:

Theorem 4.4 (Rajan et al., 2012 [160]) For odd n ≥ 5 and m ≤ 6, the follow-
ing hold:

cr(TSn +Dm) = Z(n,m) +
⌊n
2

⌋ ⌊m
2

⌋
,

cr(TSn + Pm−1) = Z(n,m) +
⌊n
2

⌋ ⌊m
2

⌋
,

cr(TSn + Cm) = Z(n,m) +
⌊n
2

⌋ ⌊m
2

⌋
+ 2.

4.5.2 Cycles and wheels

In 2014, Yue et al. [231] considered the join product of the wheel graph Wm with the
cycle graph Cn, and gave a conjecture as to its crossing number. They proved the
conjecture was correct for m ≤ 4, although m = 3 was already known from Klešč
(2007) [96].

Conjecture 4.5 (Yue et al., 2014 [231]) For m,n ≥ 3, the following holds:

cr(Wm + Cn) = Z(m+ 1, n) +
⌊m
2

⌋ ⌊m− 1

2

⌋⌊n
2

⌋
+
⌈m
2

⌉
+
⌈n
2

⌉
+ 2,

with the conjecture known to hold for m = 3 and m = 4.
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5 Other kinds of graph products

5.1 Strong products

The strong product of two graphs G and H , denoted G�H , is the graph with the
vertex set V (G) × V (H) and edge set {

(
(u, v), (x, y)

)
: u = x and (v, y) ∈ E(H),

or v = y and (u, x) ∈ E(G), or (u, x) ∈ E(G) and (v, y) ∈ E(H)}. An example of
P3 � P4 is displayed in Figure 16.

5.1.1 Two paths

In 2013, Klešč et al. [106] considered the strong product of two path graphs, Pn�Pm

for n,m ≥ 3. They first determined the crossing number of Pn � P3, and then
proposed a conjecture about the crossing number of Pn�Pm, which was subsequently
proved by Ma [134] to be correct in all cases except P4 � P4.

Figure 16: The strong product P3 � P4.

Theorem 5.1 (Klešč et al., 2013 [106]) For n ≥ 3, the following holds:

cr(Pn � P3) = n− 3.

Theorem 5.2 (Ma, 2017 [134]) The following holds:

cr(Pn � Pm) =

{
4, for n = m = 4,

(m− 1)(n− 1)− 4, for n > m ≥ 4.

5.1.2 Paths and cycles

In 2018, Ouyang et al. [151] considered the strong product of a path and a cycle:

Theorem 5.3 (Ouyang et al., 2018 [151]) For m ≥ 1 and n ≥ 3, the following
holds:

cr(Pm � Cn) ≤ (m− 1)n,

with equality for m = 1 and m = 2.

Conjecture 5.4 (Ouyang et al., 2018 [151]) Theorem 5.3 holds with equality.
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6 Hypercubes, meshes, and other recursive constructions

The graph families in this section have the common property that their number
of vertices grow exponentially in terms of their parameters. Many, but not all, of
these graph families arose due to their relation to network topologies in VLSI design.
Leighton’s pioneering work in this area continues to motivate the study of these
graphs today [115, 116].

6.1 Hypercubes and related constructions

The n-dimensional hypercube, Qn, contains 2n vertices and n · 2n−1 edges. Each
vertex is labelled by a different n-digit binary number and an edge exists between
two vertices when their labels differ in exactly one digit. An example of the 4-cube,
Q4, is displayed in Figure 17 in two different drawings.

Figure 17: The hypercube Q4 in two different drawings.

6.1.1 n-cube

The crossing number of the n-dimensional hypercube, often called the n-cube, was
first considered by Eggleton and Guy [40] in 1970, who claimed to have discovered
an upper bound. By 1973, it was known that their proof contained an error, as was
discussed by Erdős and Guy [41]. Nonetheless, Erdős and Guy conjectured that not
only would the upper bound discovered in [40] be proved to be correct, but that the
crossing number would meet this bound exactly. In the following years, some weaker
bounds were proved.

Theorem 6.1 (Madej, 1991 [137]) For n ≥ 1, the following holds:

cr(Qn) ≤
1

6
4n − n22n−3 − 3 · 2n−4 +

1

48
(−2)n.

Theorem 6.2 (Faria and De Figueiredo, 2000 [43]) For n ≥ 1, the following
holds:

cr(Qn) ≤
165

1024
4n − 2n2 − 11n+ 34

2
2n−2.
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Finally, in 2008 the original upper bound from Eggleton and Guy was proved to
be correct by Faria et al. [44] who established that:

Theorem 6.3 (Faria et al., 2008 [44]) For n ≥ 1, the following holds:

cr(Qn) ≤
5

32
4n −

⌊
n2 + 1

2

⌋
2n−2.

It has since been claimed by Yang et al [219] that Faria et al. had an error in
their proof as well. Indeed, Yang et al. [219] give the following updated upper bounds
for the n-cube, which implies that the previous upper bound is not tight. At the
current time, their paper has not undergone peer review and exists only on ArXiv.
We are not in a position to check the following result, however we have verified
that their drawing of the 7-cube, provided in their paper, is valid and does improve
on the upper bound given in Theorem 6.3 for n = 7. This refutes the conjecture
by Erdős and Guy that equality would hold. In particular, their drawing contains
1744 crossings, compared to the 1760 crossings suggested by Theorem 6.3. We have
also independently discovered our own drawings of the 7-cube with fewer than 1760
crossings.

Theorem 6.4 (Yang et al., 2017 [219]) The following holds:

cr(Qn) ≤

⎧⎨
⎩

139
896

4n −
⌊
n2+1
2

⌋
2n−2 +

(
4
7

)
23�n

2 �−n, for 5 ≤ n ≤ 10,

26695
172032

4n −
⌊
n2+1
2

⌋
2n−2 −

(
n2+2
3

)
2n−2 +

(
4
7

)
23�n

2 �−n, for n ≥ 11.

There have also been some lower bounds proved for the n-cube. Most notably, in
1993, Sýkora and Vrt’o [195] showed that:

Theorem 6.5 (Sýkora and Vrt’o, 1993 [195]) For n ≥ 1, the following holds:

cr(Qn) >
4n

20
− (n+ 1)2n−2.

The lower bound is trivial for n ≤ 4. Finally, Q1, Q2 and Q3 are planar, and Q4

is isomorphic to C4�C4, so it is known from Dean and Richter [34] that cr(Q4) = 8.
The crossing number of Qn for n ≥ 5 has still not been determined.

6.1.2 Locally twisted cubes

A variation of the hypercube is the n-dimensional locally twisted cube LTQn, pro-
posed by Yang et al. [215]. It is defined as follows: Let LTQ2 be identical to Q2. For
n ≥ 3, LTQn is built from two disjoint copies of LTQn−1. In the first copy, augment
the labeling of each node by adding 0 to the front, and in the second copy, augment
the label of each node by adding 1 to the front. For each node 0x2x3 . . . xn in the
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Figure 18: The locally twisted cube LTQ4.

first copy, add an edge to node 1(x2 + xn)x3 . . . xn in the second copy, where the
addition is modulo 2. The result is an n-regular graph on 2n vertices. An example
of the locally twisted cube LTQ4 is displayed in Figure 18.

Wang et al. [200] determined the following bounds for cr(LTQn):

Theorem 6.6 (Wang et al., 2017 [200]) For n ≥ 6, the following bounds hold:

4n

20
− (n2 + 1)2n−1 < cr(LTQn) ≤

265

6
4n−4 −

(
n2 +

15 + (−1)n−1

6

)
2n−3.

6.1.3 Folded hypercube

The folded hypercube FQn is obtained by taking Qn and adding in edges between all
pairs of vertices with complementary labels (that is, their labels differ in all digits).
The resulting graph is (n + 1)-regular. An example of the folded hypercube FQ4 is
displayed in Figure 19.

Figure 19: The folded hypercube FQ4.

Wang et al. [201] provided lower and upper bounds for the crossing numbers of
these graphs:

Theorem 6.7 (Wang et al., 2015 [201]) For n ≥ 1, the following bounds hold:

1

20
4n(1− (π/2(2�n/2�+ 1))−1/2)−2 < cr(FQn) ≤

11

32
4n − (n2 + 3n)2n−3.
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6.1.4 Augmented cube

The augmented cube AQn is defined as follows. Let AQ1 be isomorphic to K2, with
vertices labelled 0 and 1. AQn is generated by taking two copies of AQn−1, and
prepending 0 to the labels of the first copy and 1 to the labels of the second copy.
That is, their new labels in the first copy all begin with 0, and in the second copy all
begin with 1. Two vertices are joined by a new edge if and only if their labels differ
in only the first position (e.g. identical vertices from each copy), or if the labels differ
in all positions. The augmented cube was first proposed by Choudum and Sunitha
(2002) [24], who also provided a non-recursive definition, as follows. AQn is the
graph containing vertices labelled with n-digit binary numbers, and any two vertices
are connected by an edge if and only if there exists an l, 1 ≤ l ≤ n, such that either
(1) the two labels are different in position l, and identical in all other positions, or
(2) the two labels are identical in the first l − 1 positions and then different in all
subsequent positions. The resulting graph is (2n − 1)-regular. An example of the
augmented cube AQ3 is displayed in Figure 20.

Figure 20: The augmented cube AQ3.

In 2013, Wang et al. [199] investigated the crossing number of the augmented
cube and discovered lower and upper bounds:

Theorem 6.8 (Wang et al., 2013 [199]) The following hold: cr(AQ3) = 4,
cr(AQ4) ≤ 46, cr(AQ5) ≤ 328, cr(AQ6) ≤ 1848, cr(AQ7) ≤ 9112, and for n ≥ 8,

4n

5(1 + 22−n)2
− (4n2 + 4n+

17

5
)2n−1 < cr(AQn) <

13

16
4n − (2n2 +

7

2
n− 6)2n−2.

The lower bound is valid for all n, but is only meaningful for n ≥ 11.

6.1.5 Cube connected cycle graphs

The cube connected cycle graph CCCn is obtained from Qn by replacing vertices
of Qn with cycles of length n, as described in Sýkora and Vrt’o (1993) [195]. An
example of the cube connected cycle graph CCC4 is displayed in Figure 21.

In [195] Sýkora and Vrt’o establish lower and upper bounds for cr(CCCn):
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Figure 21: The cube connected cycle CCC4.

Theorem 6.9 (Sýkora and Vrt’o, 1993 [195]) For n ≥ 1, the following bounds
hold:

4n

20
− 3(n+ 1)2n−2 < cr(CCCn) <

4n

6
+ 3n22n−3.

6.2 Complete mesh of trees

The complete (2-dimensional) mesh of trees Mn is defined for any n which is a power
of 2, as follows: start with a square n × n grid. Identify the n vertices in each row
and each column with the n leaves of a full, complete, balanced binary tree. What
results is a graph on 3n2−2n vertices and 4n2−4n edges. For a detailed description,
see [27]. It is easy to check that M2 is just the cycle on eight vertices, and is hence
planar. An example of M4 is displayed in Figure 22.

Figure 22: The complete mesh of trees M4.

The earliest result on the crossing number of Mn is due to Leighton [116], who in
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1984 derived a lower bound. The bound is only interesting in an asymptotic sense
since it holds trivially for n ≤ 2121.

Theorem 6.10 (Leighton, 1984 [116]) For n ≥ 2 and a power of 2, the following
holds:

cr(Mn) ≥
n2 log2(n)− 121n2 + 121n

40
.

In 1996, Cimikowski [26] claimed to have determined an upper bound for the
crossing number of Mn. He later pointed out there had been an error in his proof,
and in 1998 presented an amended upper bound which he conjectured would hold
with equality, as well as a practical lower bound, which coincides with the upper
bound for the case n = 4:

Theorem 6.11 (Cimikowski, 1998 [27]) For n ≥ 4 and a power of 2, the follow-
ing bounds hold:

n2

4
≤ cr(Mn) ≤ n2

(
3 log2(n)− 5

8

)
+

n

2
.

Conjecture 6.12 (Cimikowski, 1998 [27]) The upper bound in Theorem 6.11
holds with equality.

In 2003, Cimikowski and Vrt’o [28] published a paper which included the results
from [27], and also gave an alternative lower bound, which is superior to their previous
lower bound for n ≥ 512:

Theorem 6.13 (Cimikowski and Vrt’o, 2003 [28]) For n ≥ 2 and a power of
2, the following holds:

cr(Mn) ≥
5n2 log2(n)− 44n2

80
.

The crossing number for Mn is only known for n = 1, 2, 4. Specifically, cr(M1) =
cr(M2) = 0, and cr(M4) = 4.

6.3 Butterfly graphs

The Butterfly graph BF (r) is the graph with (r + 1)2r vertices and r · 2r+1 edges,
defined as follows: The vertices are labelled 〈w, i〉 where i = 0, . . . , r and w is an r-bit
binary number. Two vertices 〈w, i〉 and 〈w′, i′〉 are adjacent if and only if i′ = i+ 1
and either w = w′, or w and w′ differ in precisely the i-th bit. An example of BF (3)
is displayed in Figure 23.

Cimikowski [26] considered the Butterfly graphs in 1996 and proved the following
upper bound for their crossing numbers:
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Figure 23: The Butterfly graph BF (3).

Theorem 6.14 (Cimikowski, 1996 [26]) For r ≥ 1, the following holds:

cr(BF (r)) ≤ 3

2
4r − 3 · 2r − r · 2r + 1.

In 2013, Manuel et al. [138] improved this upper bound, and also provided a lower
bound:

Theorem 6.15 (Manuel et al., 2013 [138]) For r ≥ 3, the following bounds hold:

1

59
4r − r · 2r + 2r−1 ≤ cr(BF (r)) ≤ 1

4
4r − r · 2r−1,

and cr(BF (3)) = 4.

6.3.1 Wrapped butterfly graphs

The Wrapped Butterfly graph, denoted WBF (r), is derived from the butterfly net-
work BF (r) by merging the first and last rows into a single row; that is, merging
vertex 〈w, 0〉 with vertex 〈w, r〉 for all w [26]. Then WBF (r) has r · 2r vertices and
r · 2r+1 edges. An example of the Wrapped Butterfly graph WBF (3) is displayed in
Figure 24.

Cimikowski [26] gave an upper bound for the crossing number of WBF (r):

Theorem 6.16 (Cimikowski, 1996 [26]) For r ≥ 1, the following holds:

cr(WBF (r)) ≤ 3

2
4r − 3 · 2r − r · 2r.

6.3.2 Benes networks

The Benes network B(r) is formed by taking two copies of the Butterfly network
BFr. For each w, vertex 〈w, r〉 from the first copy is merged with 〈w, r〉 from the
second copy [15]. As an example, B(3) is displayed in Figure 25.

In 1996, Cimikowski investigated the Benes network, and determined an upper
bound for its crossing number:

Theorem 6.17 (Cimikowski, 1996 [26]) For r ≥ 1, the following holds:

cr(B(r)) ≤ 3 · 4r − 5 · 2r − 2r · 2r + 2.
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Figure 24: The Wrapped Butterfly graph WBF (3).

Figure 25: The Benes network B(3).

6.4 Generalized fat trees

Generalized fat trees, GFT (h,m,w) were introduced in 1995 by Ohring et al. [146]
as a new network topology. They are a three parameter family of graphs with∑h

i=0m
iwh−i vertices and

∑h−1
i=0 mh−iwi+1 edges. The definition of generalized fat

trees is complicated, and so we refer the interested reader to [146] for the full defini-
tion.

In 2011, Rajan et al. [159] considered the crossing number of generalized fat
trees, and determined an upper bound for the special case GFT (h, 3, 3), as well as a
conjecture for an upper bound for the general case:

Theorem 6.18 (Rajan et al., 2011 [159]) For h ≥ 1, the following holds:

cr(GFT (h, 3, 3)) ≤ 3h +
5

4
32h − 1

4
3h+2 − h

2
3h+1.



K. CLANCY ET AL. /AUSTRALAS. J. COMBIN. 78 (1) (2020), 209–296 266

Figure 26: The generalized fat tree GFT (2, 3, 3).

Conjecture 6.19 (Rajan et al., 2011 [159]) For h ≥ 2 and m,w ≥ 1, the fol-
lowing hold:

cr(GFT (h,m,w)) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

whm(m−1)
4

(
wh+2 1−( m

w2 )
h

w2−m
− h
)
, if m = w,

whm(m−1)
4

(
whh− w

1−(m
w )

h

w−m

)
, if m = w2,

wh+1m(m−1)
4

(
wh+1 1−( m

w2 )
h

w2−m
− 1−(m

w )
h

w−m

)
, otherwise.

6.5 Sierpiński and Sierpiński-like graphs

In 2005, Klavžar and Mohar [84] considered Sierpiński graphs, and two of their
regularizations. The Sierpiński graph S(n, k) for n, k ≥ 1 is defined as follows:
The vertex set is {1, . . . , k}n, and two different vertices u = (u1, . . . , un) and v =
(v1, . . . , vn) are adjacent if and only if there exists an integer h ∈ {1, . . . , n}, such
that

(i) ut = vt for t = 1, . . . , h− 1;

(ii) uh �= vh; and

(iii) ut = vh and vt = uh for t = h + 1, . . . , n.

In this construction, any vertex of the form (i, i, . . . , i) is called an extreme vertex.
From S(n, k), two regularizations can be defined. First, S+(n, k) is obtained from
S(n, k) by adding a single vertex w which is connected to all extreme vertices in
S(n, k). Second, S++(n, k) is obtained by taking the union of k + 1 copies of S(n−
1, k), and then connecting the extreme vertices as a Kk+1. Both regularizations
produce a regular graph of degree k. Examples of S(2, 4), S+(2, 4) and S++(2, 4) are
displayed in Figure 27. A full definition is given in Klavžar and Mohar [84].

For S(n, k), Klavžar and Mohar only determined upper and lower bounds for the
case k = 4, but for S+(n, k) and S++(n, k), they determined the crossing numbers in
terms of the crossing numbers of complete graphs Kk+1. Hence, the latter are known
precisely only for k ≤ 11. For k ≤ 3, all three constructions are planar.
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Figure 27: The Sierpiński graph S(2, 4), left, along with the extended Sierpiński
graphs S+(2, 4), centre, and S++(2, 4), right.

Theorem 6.20 (Klavžar and Mohar, 2005 [84]) For k ≥ 2, the following hold:

3

16
4n ≤ cr(S(n, 4)) ≤ 1

3
4n − 12n− 8

3
, for n ≥ 3,

cr(S+(n, k)) =
kn − 1

k − 1
cr(Kk+1), for n ≥ 1,

cr(S++(n, k)) =
(k + 1)kn−1 − 2

k − 1
cr(Kk+1), for n ≥ 1.

6.6 Star maps and pancake graphs

In 1989, Akers and Krishnamurthy [6] proposed two recursive graph families as spe-
cial cases of Cayley graphs, namely the Star maps (also known as Star graphs) and
the pancake graphs. To avoid confusion with stars Sn = K1,n, we will use the term
Star map and a calligraphy S∗.

The Star map S∗
n contains n! vertices labelled with the n! permutations on the

set of symbols 1, 2, . . . , n. An edge {i, j} exists if and only if the label for j can be
obtained from the label for i by exchanging the first symbol with any other symbol.
For example, in S∗

3 , the vertex labelled 123 would be adjacent to 213 and 321.

In 2014, Lü et al. [130] considered S∗
4 , the smallest non-planar Star map, and

determined its crossing number:

Theorem 6.21 (Lü et al., 2014 [130]) For the Star map S∗
4 ,

cr(S∗
4 ) = 8.

The pancake graph Pn contains n! vertices labelled with the n! permutations
on the set of symbols 1, 2, . . . , n. An edge {i, j} exists if and only if the label for
j is a permutation of the label for i such that i = i1i2i3 · · · ikik+1 · · · in and j =
ik · · · i2i1ik+1 · · · in for some k where 2 ≤ k ≤ n.

In 2017, Yang et al. [218] considered P4, the smallest non-planar pancake graph,
and determined its crossing number:
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Figure 28: The Star map S4 and the pancake graph P4.

Theorem 6.22 (Yang et al., 2017 [218]) For the pancake graph P4,

cr(P4) = 6.

Results for larger Star maps or larger pancake graphs are currently unknown. S4

and P4 are displayed in Figure 28.
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A Appendices

A.1 List of graphs on six vertices

There are 156 graphs up to isomorphism on six vertices, including 112 connected
graphs and 44 disconnected graphs. We list them here in the order proposed in
Frank Harary’s classic textbook, Graph Theory [58]. The graphs are ordered by
their number of edges.

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144

145 146 147 148 149 150 151 152 153 154 155 156

Figure 29: All 156 graphs on six vertices and their indices, ordered by number of
edges.
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A.2 Tables of citations

A.2.1 Generalized Petersen graphs

Table 18: Publications where the crossing numbers for GP (n, k) were first proved.

n
5 6 7 8 9 10 11 12 13 14 15 16 17

k

1 [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42]

2 [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42] [42]

3 [56] [162] [45] [45] [162] [45] [45] [162] [45] [45] [162] [45]

4 [56] [135] [170] [128] [45] [128] [128] [128] [45]

5 [56] [135] [128] [128] [128] [45] [128]

6 [56] [135] [128] [128] [128] [45]

7 [56] [135] [128]

8 [56] [42]
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A.2.2 Cartesian products with 5-vertex graphs

Table 19: Publications where the crossing numbers of Cartesian products of 5-vertex
graphs with paths, cycles and stars were first proved. Empty cells imply the crossing
number is not known and a dash indicates that the graphs are planar.

i G5
i cr(G5

i�Pn) cr(G5
i�Cn) cr(G5

i�Sn)

1 − − [17]

2 [86] [86] [81], [73]

3 [93] [95] [18]

4 [93] [93] [97]

5 [93] [93]

6 [93] [95] [97]

7 [93] [95] [234] ∗
8 − [108]

9 [93] [95] [97]

10 [89] [94] [89]

11 [93] [99] [92]

12 [88] [93]

13 [93] [95]

14 [93] [95] [92]

15 [88] [97]

16 [91] [91]

17 [93] [93]

18 [88] [97]

19 [93] [209]

20 [93] [133] ∗
21 [90] [240] [131]
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A.2.3 Cartesian products of paths with 6-vertex graphs

Table 20: Publications where the crossing numbers of Cartesian products of 6-vertex
graphs with paths were first proved.

i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn) i G6
i cr(G6

i�Pn)

25 - 60 [105] 89 [103]

26 [105] 61 [105] 91 [155]

27 [105] 64 [105] 93 [204] ∗
28 [105] 65 [103] 94 [105]

29 [105] 66 [105] 103 [148]

31 [17] 68 [155] 104 [105]

40 - 70 [103] 109 [213] ∗
41 [105] 71 [155] 111 [105]

42 [104] 72 [105] 113 [114]

43 [105] 73 [105] 119 [245] ∗
44 [105] 74 [105] 120 [189] ∗
45 [105] 75 [104] 121 [105] ∗
46 [105] 77 [105] 125 [18]

47 [105] 79 [105] 146 [223] ∗
48 [105] 80 [105] 152 [66] ∗
51 [103] 83 [105] 154 [224]

53 [105] 85 [105] 155 [216] ∗
54 [105] 86 [105] 156 [239]

59 [105] 87 [155]
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A.2.4 Cartesian products of cycles with 6-vertex graphs

Table 21: Publications where the crossing numbers of Cartesian products of 6-vertex
graphs with cycles were first proved.

i G6
i cr(G6

i�Cn) i G6
i cr(G6

i�Cn)

25 - 49 [39]

40 [161] 53 [39]

41 [39] 54 [39]

42 [39] 67 [39]

43 [39] 78 [37]

44 [39] 113 [100]

46 [39] 156 [240]

47 [39]

A.2.5 Cartesian products of stars with 6-vertex graphs

Table 22: Publications where the crossing numbers of Crossing numbers of Cartesian
products of 6-vertex graphs with stars were first proved.

i G6
i cr(G6

i�Sn) i G6
i cr(G6

i�Sn)

25 [17] 77 [111]

26 [18] 79 [111]

27 [111] 80 [111]

28 [18] 85 [236] ∗
29 [18] 93 [132] ∗
31 [111] 94 [207]

43 [111] 104 [111]

47 [111] 111 [182] ∗
48 [111] 120 [119] ∗
53 [111] 124 [183] ∗
59 [111] 125 [209]

61 [214] ∗ 130 [191] ∗
72 [111] 137 [235] ∗
73 [111] 152 [38]
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A.2.6 Join products with 5-vertex graphs

Table 23: Publications where the crossing numbers of joins of connected 5-vertex
graphs with discrete graphs, paths and cycles were first proved. Empty cells imply
that the crossing number has not yet been determined.

i G5
i cr(G5

i +Dn) cr(G5
i + Pn−1) cr(G5

i + Cn)

1 [85] [96] [96]

2 [81], [73] [117] ∗ [237] ∗
3 [180] [180] [180]

4 [122] ∗ [122] ∗ [122] ∗
5 [16] [181] [181]

6 [117] ∗ [232] ∗
7 [35] [238] ∗ [110]

8 [85] [96] [96]

9 [117] ∗ [232] ∗
10 [10] [190] [221]

11 [92] [124] ∗ [124] ∗
12 [157] ∗ [194]

13 [97] [110] [110]

14 [92] [124] ∗ [124] ∗, [232] ∗
15 [158] ∗ [194] [187]

16 [125] ∗ [125] ∗ [125] ∗
17 [190]

18 [123] ∗ [123] ∗ [187]

19 [35] [192] ∗ [231]

20 [75] [185]

21 [131] [188]
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A.2.7 Join products with 6-vertex graphs

Table 24: Publications where the crossing numbers of joins of particular 6-vertex
graphs with discrete graphs, paths and cycles were first proved.

i G6
i cr(G6

i +Dn) cr(G6
i + Pn−1) cr(G6

i + Cn)

25 [85] [96] [96]

31 [141] ∗ [118] ∗ [193] ∗
40 [85] [96] [96]

44 [177] [118] ∗
45 [178]

48 [118] ∗
49 [246] [246] [246]

59 [120] ∗ [249]

60 [102] [102] [102]

61 [112] [112] [112]

66 [177]

72 [118] ∗
73 [118] ∗
74 [177]

79 [118] ∗
83 [98] [98] [98]

85 [236] ∗
93 [76]

94 [207] [248] [248]

103 [175] ∗ [176] ∗
109 [150] [150] [150]

111 [182] ∗ [186] ∗ [186] ∗
120 [119] ∗ [184] [184]

124 [183] ∗
125 [209] [192] ∗
130 [191] ∗
137 [235] ∗
152 [74]
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A.3 Glossary of symbols

Table 25 contains an alphabetized list of symbols which are used in this survey. Care
has been taken to not use any symbols for multiple purposes.

Table 25: List of symbols used in this survey, with descriptions.

Symbol Description Symbol Description

AQn Augmented cube Pn Pancake graph

B(r) Benes network Qn n-dimensional hypercube

BF (r) Butterfly graph Sn Star on n+ 1 vertices

Cn Cycle on n vertices Sn Sunlet graph

Cn Complement of Cn S∗
n Star map

CCCn Cube connected cycle graph S(n, k) Sierpiński graph

Cin(L) Circulant graph S+(n, k) Extended Sierpiński graph

Dn Discrete graph on n vertices S++(n, k) Extended Sierpiński graph

FQn Folded hypercube T Tree

Gn
i Graph i on n vertices T (m,n) Twisted toroidal graph

GFT (h,m,w) Generalized fat tree TSn Triangular snake graph

GP (n, k) Generalized Petersen graph Wn Wheel on n+ 1 vertices

H3,n Hexagonal graph W2,n Double cone on n+ 2 vertices

In Flower Snark WBF (r) Wrapped Butterfly graph

Kn Complete graph WΔ,n Knödel graph

Km,n Complete bipartite graph X (m,n) Crossed toroidal graph

Ka1,a2,...,ak Complete k-partite graph Z(m,n) Conjectured value of cr(Km,n)

LTQn Locally twisted cube G�H Cartesian product of G and H

Mn Complete mesh of trees G+H Join product of G and H

Pn Path on n+ 1 vertices G�H Strong product of G and H

P k
n k-power of Pn
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A.4 Incorrect results

Throughout the history of research into crossing numbers, it is unfortunately com-
mon for papers to contain errors. Indeed, the inaugural result relating to crossing
numbers, Zarankiewicz’s proof for the crossing number of complete bipartite graphs,
was later found to have an error and the result is still not resolved to this day. In
this section we attempt to detail any publications which contain incorrect proofs or
results. In some cases, the flaws were found and either simply noted, or in some
cases corrected. In other cases, the flaws have not been widely recognised, in which
case we provide a counterexample demonstrating the incorrect result. The intention
is not to disparage the authors, but rather to ensure that researchers do not use the
flawed results as a basis for future proofs, and to provide references containing the
corrected results when such results exist.

The incorrect results are listed in order of appearance. When the result is known
to be incorrect due to a later publication, references to the publications are given.
When the result is known to be incorrect due to the existence of a better drawing,
we show such a counterexample as obtained by QuickCross [29]. When the result is
known to be incorrect because a drawing does not exist with the proposed number of
crossings, we use Crossing Number Web Compute [23] to determine the true crossing
number for a minimal counterexample.

• In 1955, Zarankiewicz [233] claimed to have determined that the crossing num-
ber of complete bipartite graphs Km,n. The flaw in the proof was noted and
communicated privately, and subsequently described by Guy [54] in 1969. The
result is now known to be correct for min{m,n} ≤ 6, and the special cases
m ≤ 8, n ≤ 10; see Section 2.1.1.

• In 1986, Fiorini [45] claimed to have determined that the crossing number of
the generalized Petersen graph GP (10, 3) was equal to four. This was shown
to be false in 1992 by McQuillan and Richter [140] who conjectured that the
true value would be six, which was finally proved by Richter and Salazar [162]
in 2002. Fiorini (along with co-author Gauci) also corrected his earlier proofs
in a paper published in 2003 [46]; see Section 2.4.

• In 1996, Cimikowski [26] claimed to have determined an upper bound for the
crossing number of the complete mesh of trees Mn, but in 1998 he reported the
error himself and provided a corrected upper bound [27]; see Section 6.2.

• In 2005, Wang and Huang [202] determined the crossing number of the Carte-
sian product of four six-vertex graphs with paths. For the first of these graphs,
G6

131 (which they label G1), they claimed that cr(G6
131�Pn) = 3n−1 for n ≥ 1.

This is not correct. Indeed, we used Crossing Number Web Compute to show
that cr(G6

131�P1) = 4, rather than 2 as would be suggested by [202].

• In 2008, He [65] considered the crossing number of K4,n with two edges deleted.
In particular, if the 4 vertices are denoted y1, y2, y3, y4 and the n vertices
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are denoted x1, x2, . . . , xn, then they remove edges {x1, y1} and {x1, y2}. He
claimed to have proved the crossing number is equal to Z(4, n)− 2

⌊
n
2

⌋
+ 2 for

n ≥ 4. The result appears to be incorrect for odd values of n. In particular, in
Figure 30 we display a drawing of K4,5 with two edges removed as described
above, with only four crossings, rather than the six suggested by [65].

Figure 30: A drawing of K4,5 minus two edges, with only four crossings.

• In 2011, He [69] considered the crossing number of G5
3�Sn and G5

4�Sn and
claimed that both were equal to 4

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1. These results

are contradicted by Bokal (2007) [18] and Klešč (2009) [97] respectively, who
showed that each has crossing number equal to 3

⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
. Tests with

QuickCross have confirmed that it is possible to find drawings with the latter
number of crossings, e.g. see Figure 31 in which drawings of G5

3�S3 and G5
4�S3

are drawn with four crossings, rather than the five suggested by [69].

Figure 31: Drawings of G5
3�S3 and G5

4�S3, with only four crossings.
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• In 2015, Cruz and Japson [31] considered the crossing number of GP (17, 5) and
claimed it was equal to 14. This result is contradicted by Newcombe (2019)
[144], who presented a drawing of GP (17, 5) with only 13 crossings.

• In 2016, Hsieh and Lin [77] claimed to have determined the crossing number of
the join product of various path powers with discrete graphs and path graphs.
All of the claimed results appear to be incorrect, as they all rely on an interme-
diate result, Lemma 5 of [77], which claims that cr(Pm−1

m +Dn) = cr(Pm−2
m +Dn)

for 3 ≤ m ≤ 6 and n ≥ 1. This result is incorrect. In [77], P k
m is defined as

the k-th power on the path graph with m vertices, rather than m edges. The
minimal counterexample can be seen by considering graphs on four vertices.
By Hsieh and Lin’s definition, P 3

4 = K4 and P 2
4 = K4 \ e. However, we know

from Ho [75] that cr(K4+Dn) = 2
⌊
n
2

⌋ ⌊
n−1
2

⌋
+n, and from Klešč and Schrötter

[109] that cr((K4 \ e) +Dn) = 2
⌊
n
2

⌋ ⌊
n−1
2

⌋
+
⌊
n
2

⌋
.

• In 2016, Vijaya et al. [197] considered the join product of G6
133 with discrete

graphs, paths and cycles. They provided detailed proofs for the cases of discrete
graphs and paths, but omitted the proof for cycles, for which they claimed that
cr(G6

133+Cn) = Z(6, n)+n+2
⌊
n
2

⌋
+5, for n ≥ 3. This appears to be incorrect.

In particular, in Figure 32 we display a drawing of G6
133 +C3 which has fifteen

crossings, rather than sixteen as suggested by [197].

Figure 32: A drawing of G6
133 + C3, with only fifteen crossings.

• In 2016, Zhou and Li [247] considered the join product of G6
111 with discrete

graphs, paths and cycles. They claimed that cr(G6
111 +Dn) = Z(6, n) + 2

⌊
n
2

⌋
,
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cr(G6
111 +Pn−1) = Z(6, n)+ 2

⌊
n
2

⌋
+1 and cr(G6

111+Cn) = Z(6, n)+ 2
⌊
n
2

⌋
+3.

These appear to be incorrect, and Crossing Number Web Compute shows that
the minimal counterexamples are cr(G6

111 + D1) = 1, cr(G6
111 + P1) = 4 and

cr(G6
111 +C3) = 13, rather than the zero, three and eleven crossings suggested

by [247] respectively.

The proof files for the crossing numbers determined by Crossing Number Web
Compute are available as follows:

cr(G6
131�P1) = 4: http://crossings.uos.de/job/KN4vnYbb797WV0C5TQdTNA

cr(G6
111 +D1) = 1: http://crossings.uos.de/job/MuRSG12mxlzDmJz4cc9eFA

cr(G6
111 + P1) = 4: http://crossings.uos.de/job/dhr5Vl 8pWDL-jAARvBNzw

cr(G6
111+C3) = 13: http://crossings.uos.de/job/SHHUcOtUyGpQFNY-Nqmwxg
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[131] Shengxiang Lü and Yuanqiu Huang, The crossing number of K5×Sn, J. Math.
Res. Exp., 28(3) (2008), 445–459.
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[153] János Pach and Géza Tóth, Graphs drawn with few crossings per edge, Com-
binatorica, 17(3) (1997), 427–439.

[154] Shengjun Pan and R. Bruce Richter, The crossing number of K11 is 100, J.
Graph Th., 56(2) (2007), 128–134.
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